An=a1+d(n-1)
an=nth term
a1=first term, when n=1
d=common differnce=amount each term increases by
n=which one
so
when n=1, an=40
so a1=40
it seems to increas by 7 each time
an=40+7(n-1)
explicit formula is expanded
an=40+7n-7
an=33+7n is the formula
the domain is natural numbers because you can't have the -3rd term or the 0th term or the 3.24th term
domain is natural numbers
the formula is

or
Negative, because Correlation and slope have the same direction (Sxy will be negative)
Answer:
12. The second one
13. The first one
14. The last one
15. The first one
16. 30 degrees
Step-by-step explanation:
Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 
Here are the values of the first 5 terms of 3 sequences: : 30, 40, 50, 60, 70, . . . : 0, 5, 15, 30, 50, . . . : 1, 2, 4, 8, 16,
Levart [38]
Answer:
1,2,4,8,16.
Step-by-step explanation:
they are a square root of 2 for each question. it will eventually get up higher then additive.