Answer: Not 100% sure but this is what I think.
-4/5
Step-by-step explanation:
(5, -1) (15, −9)
1Y - 2Y / 1X - 2X = SLOPE
-1 + 9 / 5 - 15 = 8/-10 = -8/10 = -4/5
Answer:
So then the correct answer would be:
B) .9996
Step-by-step explanation:
The exact way to solve this problem is using the binomial distribution, assuming that our random variable of interest is "number of students living in apartments" represented by X and 
And we want this probability:
So we see that we satisfy the conditions and then we can apply the approximation.
If we appply the approximation the new mean and standard deviation are:
And then 
And we are interested on the following probability:
So then the correct answer would be:
B) .9996
Answer:

____________________________________

Y=mx+b
m=4-1\3-2
3\1
y=3\1x+b
(u can take any of the 2 points.am taking the first one)
4=3\1(3)+b
4=9+b
4-9=b
-5=b
answer=
y=3\1x-5
Step-by-step explanation:
<em>Given</em>
<em>We </em><em>know </em><em>that </em><em>in </em><em>a </em><em>parallelogram </em><em>opposite </em><em>angles </em><em>are </em><em>equal</em><em>. </em><em>So </em>
<em>1st </em><em>and </em><em>3rd </em><em>angles </em><em>=</em><em> </em><em>1</em><em>1</em><em>8</em><em>°</em>
<em>Let </em><em>2nd </em><em>and </em><em>4th </em><em>angles </em><em>=</em><em> </em><em>x</em>
<em>Now</em>
<em>1</em><em>1</em><em>8</em><em>°</em><em> </em><em>+</em><em> </em><em>1</em><em>1</em><em>8</em><em>°</em><em> </em><em>+</em><em> </em><em>x </em><em>+</em><em> </em><em>x </em><em>=</em><em> </em><em>3</em><em>6</em><em>0</em><em>°</em><em> </em><em>(</em><em> </em><em>Being </em><em>sum </em><em>of </em><em>angles </em><em>of </em><em>parallelogram</em><em>) </em>
<em>2</em><em>3</em><em>6</em><em>°</em><em> </em><em>+</em><em> </em><em>2x </em><em>=</em><em> </em><em>3</em><em>6</em><em>0</em><em>°</em>
<em>2x </em><em>=</em><em> </em><em>3</em><em>6</em><em>0</em><em>°</em><em> </em><em>-</em><em> </em><em>2</em><em>3</em><em>6</em><em>°</em>
<em>2x </em><em>=</em><em> </em><em>1</em><em>2</em><em>4</em><em>°</em>
<em>Therefore </em><em>x </em><em>=</em><em> </em><em>6</em><em>2</em><em>°</em>
<em>Now </em><em>the </em><em>measure </em><em>of </em><em>other </em><em>all </em><em>angles </em>
<em>118</em><em>°</em><em> </em><em>,</em><em> </em><em>6</em><em>2</em><em>°</em><em> </em><em>,</em><em> </em><em>1</em><em>1</em><em>8</em><em>°</em><em>,</em><em> </em><em>6</em><em>2</em><em>°</em>