Given:
Consider the given expression is 

To find:
The radical form of given expression.
Solution:
We have,



![(4x^3y^2)^{\frac{3}{10}}=\sqrt[5]{2^3}\sqrt[10]{x^9}\sqrt[5]{y^3}](https://tex.z-dn.net/?f=%284x%5E3y%5E2%29%5E%7B%5Cfrac%7B3%7D%7B10%7D%7D%3D%5Csqrt%5B5%5D%7B2%5E3%7D%5Csqrt%5B10%5D%7Bx%5E9%7D%5Csqrt%5B5%5D%7By%5E3%7D) 
       ![[\because x^{\frac{1}{n}}=\sqrt[n]{x}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20x%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%3D%5Csqrt%5Bn%5D%7Bx%7D%5D)
![(4x^3y^2)^{\frac{3}{10}}=\sqrt[5]{8y^3}\sqrt[10]{x^9}](https://tex.z-dn.net/?f=%284x%5E3y%5E2%29%5E%7B%5Cfrac%7B3%7D%7B10%7D%7D%3D%5Csqrt%5B5%5D%7B8y%5E3%7D%5Csqrt%5B10%5D%7Bx%5E9%7D) 
       ![[\because x^{\frac{1}{n}}=\sqrt[n]{x}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20x%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%3D%5Csqrt%5Bn%5D%7Bx%7D%5D)
Therefore, the required radical form is ![\sqrt[5]{8y^3}\sqrt[10]{x^9}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B8y%5E3%7D%5Csqrt%5B10%5D%7Bx%5E9%7D) .
.
 
        
             
        
        
        
<h3> zor bir soru cevap Ceyhan</h3>
 
        
        
        
The value of a is -6
The value of b is 48
        
                    
             
        
        
        
Answer:
f=10
Step-by-step explanation:
I don't know a formula for this but I can see that <CRE is a 90° angle so 7f+2f=90 and if f=10 7f=70 and 2f=20 which fits