1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katena32 [7]
4 years ago
7

8-3x=8 solve for X what is X?

Mathematics
1 answer:
NemiM [27]4 years ago
3 0

Answer:

X = 0

Step-by-step explanation:

In the photo!!!

You might be interested in
Can someone PLZZZZ HELP!!!!
swat32

Answer:

The solution is:

Part A. \sqrt{5}^{\frac{7k}{3}}) which is sqrt(5)^7k/3[/tex]

Part B. k = 18/7

Step-by-step explanation:

Part A.

To solve this part, we're going two use THREE important properties of exponents:

1. (x^{n})^{m} = x^{nm}

2. \frac{x^{n}}{x^{m}} = x^{n-m}

3. \sqrt[n]{x^{m}} = x^{\frac{m}{n} }

Let's work the numerator using the properties 1, 2 and 3:

(\sqrt{5}^{3} )^{\frac{k}{9} } }  = (\sqrt{5}^{3\frac{k}{9}}) = (\sqrt{5}^{\frac{k}{3}})

Let's work the denominator using the properties 1, 2 and 3:

(\sqrt{5}^{6} )^{-\frac{k}{3} } }  = (\sqrt{5}^{6\frac{k}{3}}) = (\sqrt{5}^(2k))

Now dividing the numerator by the denominator:

\sqrt{5}^{\frac{k}{3}-(-2k)})=\sqrt{5}^{\frac{7k}{3}})

Part B

if 5^{\frac{3}{2} } 5^{\frac{3}{2}} = \sqrt{5}^{\frac{7k}{3}})

Then:

5^{3} = 5^{\frac{7k}{6}})

So \frac{7k}{6}} = 3

Solving for k, we have:

k = 18/7

7 0
4 years ago
The length of a line segment is 7. Its end points are (1, 3) and (k, 3). Solve for k. Is there more than one solution? Explain.
Brilliant_brown [7]
Endpoints:\\\\A(1,3)\ and\ B(k,3)\\\\Formula\ for\ length\ of\ line:\\\\
|AB|=\sqrt{(x_b-x_a)^2+(y_b-y_a)^2}\\\\
|AB|=7\\\\7=\sqrt{(k-1)^2+(3-3)^2}\\\\
7=\sqrt{k^2-2k-1}\ \ |^2\\\\
49=k^2-2k-1
49=k^2-2k-1\\\\
-k^2+2k+1+49=0\\\\
-k^2+2k+50=0\\\\ \Delta=b^2-4ac\\\\a=-1,\ b=2,\ c=50 \\\\\Delta=(2)^2-4*(-1)*50=4-=4+200=204\\\\ \sqrt{\Delta}=2\sqrt{51}\\\\k_1=\frac{-b-\sqrt{\Delta}}{2a}\ \ k_1=\frac{-2-2\sqrt{51}}{2*(-1)}=1+\sqrt{51} \\\\\ or\  k_2=\frac{-b+\sqrt{\Delta}}{2a}\ \ k_1=\frac{-2+2\sqrt{51}}{2*(-1)}=1-\sqrt{51}
5 0
3 years ago
One-eighth of a number is -4,200.<br><br> What is the number?
Leno4ka [110]
0.125 sorry if I’m wrong :(
7 0
4 years ago
Can anyone help me ???
tia_tia [17]

1.57, divide two times pi (3.14)

3 0
3 years ago
Please help don’t understand
yarga [219]

Answer:

D

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • 6 grade course 1 countdown 8 and 7 weeks
    11·1 answer
  • Write the fraction 5/6 as a percent. Round to the nearest hundredth of a percent where necessary.
    10·1 answer
  • Factor:<br> 4b2 - 12b + 9
    11·1 answer
  • Is 3 gallons greater than 10 quarts?
    8·1 answer
  • -5(4-2j) in its simpilest form
    6·1 answer
  • Negative numbers are just like positive numbers, but they always have a factor of ___ built into them.
    11·2 answers
  • What is the radius of a circle with an area of 78.5 cubic inches? Use 3.14 for pi. Enter your answer in the box.
    15·2 answers
  • Find the product 0.9×079=
    12·2 answers
  • How do o graph this?​
    8·1 answer
  • 4x + y = -1<br> 4x - 3y = 7<br> Solve the simultaneous equation.<br><br> x=__<br> y=__
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!