Answer:
the slope is -2/3x and the y intercept is 1
Step-by-step explanation:
Answer:
y = 18x + 10
slope = 18
y-intercept = 10
Step-by-step explanation:
The situation given in the problem is linear and can be represented using slope-intercept form of a linear equation: y = mx + b, where 'm' is equal to the slope, 'b' is equal to the y-intercept, 'x' is the number of hours and 'y' is the total number of miles.
Given that Jasmine has already biked 10 miles, her initial value, or y-intercept would be 10. Since she is now biking at a rate of 18 miles per hour, her rate of change, or slope, would be 18.
Using these values for 'm' and 'b': y = 18x + 10
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
<h3>¿Cuál es el volumen remanente entre una caja cúbica vacía y una pelota?</h3>
En esta pregunta debemos encontrar el volumen <em>remanente</em> entre el espacio de una caja <em>cúbica</em> y una esfera introducida en el elemento anterior. El volumen <em>remanente</em> es igual a sustraer el volumen de la pelota del volumen de la caja.
Primero, se calcula los volúmenes del cubo y la esfera mediante las ecuaciones geométricas correspondientes:
Cubo
V = l³
V = (4 cm)³
V = 64 cm³
Esfera
V' = (4π / 3) · R³
V' = (4π / 3) · (2 cm)³
V' ≈ 33.5103 cm³
Segundo, determinamos la diferencia de volumen entre los dos elementos:
V'' = V - V'
V'' = 64 cm³ - 33.5103 cm³
V'' = 30.4897 cm³
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
Para aprender más sobre volúmenes: brainly.com/question/23940577
#SPJ1
Answer:
72°
Step-by-step explanation:
The cookie has a shape of a circle. A circle is the locus of a point such that its distance from a point (center) is always the same. The sum of angles around the circle center is 360°.
Let x be the measure of the angle in each slice. Therefore the sum of the total 5 slice is:
x + x + x + x + x = 360
5x = 360
Dividing through by 5:
5x / 5 = 360 / 5
x = 72°
Each slice has an angle measure of 72°
Answer:

Step-by-step explanation:
f(x) = 9x³ + 2x² - 5x + 4; g(x)=5x³ -7x + 4
Step 1. Calculate the difference between the functions
(a) Write the two functions, one above the other, in decreasing order of exponents.
ƒ(x) = 9x³ + 2x² - 5x + 4
g(x) = 5x³ - 7x + 4
(b) Create a subtraction problem using the two functions
ƒ(x) = 9x³ + 2x² - 5x + 4
-g(x) = <u>-(5x³ - 7x + 4)
</u>
ƒ(x) -g(x)=
(c). Subtract terms with the same exponent of x
ƒ(x) = 9x³ + 2x² - 5x + 4
-g(x) = <u>-(5x³ - 7x + 4)
</u>
ƒ(x) -g(x) = 4x³ + 2x² + 2x
Step 2. Factor the expression
y = 4x³ + 2x² + 2x
Factor 2x from each term
y = 2x(2x² + x + 1)
