A.) 7^4x = 10
log base 10 (7^4X) = log base 10 (10)
4x log base 10 (7) = 1
4x (0.8451) = 1
3.3804x = 1
x = 0.2958
b.) ln(2) + ln(4x-1) = 5
ln (2 * 4x-1) = 5
ln (8x-2) = 5
log base (3) (8x-2) = 5
e^5 = 8x-2
e^5+2 = 8x
x = 18.8016
Let the three gp be a, ar and ar^2
a + ar + ar^2 = 21 => a(1 + r + r^2) = 21 . . . (1)
a^2 + a^2r^2 + a^2r^4 = 189 => a^2(1 + r^2 + r^4) = 189 . . . (2)
squaring (1) gives
a^2(1 + r + r^2)^2 = 441 . . . (3)
(3) ÷ (2) => (1 + r + r^2)^2 / (1 + r^2 + r^4) = 441/189 = 7/3
3(1 + r + r^2)^2 = 7(1 + r^2 + r^4)
3(r^4 + 2r^3 + 3r^2 + 2r + 1) = 7(1 + r^2 + r^4)
3r^4 + 6r^3 + 9r^2 + 6r + 3 = 7 + 7r^2 + 7r^4
4r^4 - 6r^3 - 2r^2 - 6r + 4 = 0
r = 1/2 or r = 2
From (1), a = 21/(1 + r + r^2)
When r = 2:
a = 21/(1 + 2 + 4) = 21/7 = 3
Therefore, the numbers are 3, 6 and 12.
Answer:
Kendra should have multiplied the x-values by 75 to get the y-values
Step-by-step explanation:
Given
Table
X|| Y
1 || 75
2 || 150
3 || 225
4 || 300
5 || 375
Given that Kendra multiply x by 7.5 to get y
The relationship of x and y can be calculated as thus;
y = rx
Where y and x are the values at the y and x column respectively and r is the constant of proportionality
When y = 75, x = 1.
Plug in these values in the above formula
y = rx becomes
75 = r * 1
75 = r
r = 75
When y = 150, x = 2
150 = r * 2
Multiply both sides by ½
150 * ½ = r * 2 * ½
75 = r
r = 75
When y = 225, x = 3
225 = r * 3
Multiply both sides by ⅓
225 * ⅓ = r * 3 * ⅓
75 = r
r = 75
Notice that r remains 75 and the difference between y values is 75
If you apply these formula on when y = 300 or 375 and when x = 4 or 5, the constant of proportionality will remain The value of 75.
Hence, Kendra mistake is that; Kendra should have multiplied the x-values by 75 to get the y-values
Answer:
6
Step-by-step explanation:
Automatically your going to spend $43.00 just on tickets with the $3.00 service fee. So 6x5=30. The 6 equals 6 bags of popcorn and 5 equals the cost of the bags of popcorn. if you add 30 and $43.00 you get $73.00 With 2 dollars left to spends. So the max number of bags of popcorn he can buy is 6 bags!