Answer:
second option i believe
Step-by-step explanation:
bc why not
Answer:
La parte de las escalara desde el piso al borde de la barda es de 5.66 metros.
⭐Explicación paso a paso
Para resolver haremos uso de identidades trigonométricas. Nos apoyaremos a su vez en la imagen adjunta, en el cual podemos representar la situación como un triángulo rectángulo.
Cateto opuesto: 4 metros
Cateto adyacente: 4 metros
Hipotenusa: longitud de la escalera (l)
Por Pitágoras:
l² = 4² + 4²
l² = 16 + 16
l² = 32
l = √32
l = 4√2 m
l = 5.66 metros
Igualmente, puedes consultar el siguiente ejercicio que es similar:
brainly.lat/tarea/257278 (Una escalera de 10 m de longitud esta apoyada sobre la pared . el pie de la escalera dista 6 m de la pared . ¿que altura alcanza la escalera sobre la pared?)
Step-by-step explanation:
Answer:
This is the answer to your question buddy
Assuming this is a multiple choice question where the layout got lost:
√-72 = i√2*36 = 6i√2
This is the last answer in the list of options
Answer:
The percentile for William is 76.97.
Step-by-step explanation:
1) Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Let X the random variable that represent the scors of a population, and for this case we know the distribution for X is given by:
Where
and 
2) Solution to the problem
We are interested in find the percentile for the score of 30 obtained by William. The best way to solve this problem is using the z score formula given by:

And z follows a normal standard distribution. We can find the z scor for the score X=30 like this:

And now we can find the probability using excel or a table, on this way:

And that means the 76.97 percentile since we have on the left of the score of 30, 0.7697 of the area on the left and 0.2303 of the area on the right.
So then the percentile for William is 76.97.