Answer:
B: 100
Explanation:
Carrying capacity is the point where a population stops growing and stays stable.
Answer:
Explanation:
Viruses are a limitation to cell theory.
According to cell theory, all cells arise from pre - existing cells. But viruses lack any membranes and do not show the characteristics of life unless they enter a living body and use its cell machinery to multiply.
Hope this helps
plz mark as brainliest!!!!
Answer:
New cells are naive to the infectious cells who attack it or they are not well prepared to deal with the different scenarios. But, the cells who are attacked before has the set or sequence of the viral or bacterial genome strand been identified by them, which leads to more safety or protection from these foreign bodies.
Explanation:
- Mechanism To attack a host cell:
The viruses and other infectious material enters and attacks the host cell, by breaching its membrane wall and installing or leaving a gene of its own inside the cell. Which then combines with the genome of the cell and it goes through the process of replication, translation etc,along with the host cell machinery. Which then spreads the specific gene strand more in the environment
- <u>Camouflage obtained by the infectious cell to hide it self:</u>
After the genome enters the host cell at first it does not recognizes the strands or foreign cells, as they cover there body with a camouflage sort of membrane and they look more like the body cells.
- <u>Reactions by the host cell and as a whole the body:</u>
The organisms detects the genome of the infections cells or strand, as they store the data about it in its server or database. As if the next time they were under attack then precautions will be there by the host cell to deal with it.
As for the cell who are never attacked before will be less safe to deal with these foreign bodies.
They show which parts of the brain are involved in specific activities
Answer:
Every population experiences genetic drift, but small populations feel its effects more strongly. Genetic drift does not take into account an allele's adaptive value to a population, and it may result in loss of a beneficial allele or fixation (rise to 100% frequency) of a harmful allele in a population.
Explanation: