The equation of the plane that goes through these points is:
6x + 2y + z = 10.
<h3>How to find the equation of a plane given three points?</h3>
The equation of the plane is found replacing the points into the following equation:
ax + by + c = z.
For point A, we have that:
3b + c = 4.
For point B, we have that:
a + 2b + c = 0.
For point C, we have that:
-a + 6b + c = 4.
Hence the system is:
From the first equation, we have that:
c = 4 - 3b.
Replacing in the second, we have that:
a + 2b + 4 - 3b = 0
a - b = -4.
Replacing in the third, we have that:
-a + 6b + 4 - 3b = 4.
-a + 3b = 0.
a = 3b.
We have that a - b = -4, hence:
3b - b = -4
2b = -4
b = -2.
a = 3b, hence a = -6.
c = 4 - 3b -> c = 10.
Hence the equation is:
ax + by + c = z.
z = -6x - 2y + 10
6x + 2y + z = 10.
More can be learned about the equation of a plane at brainly.com/question/13854649
#SPJ1
Answer:
20/5 = x /4 x = 80/5 = 16
x - 10 / 39 = 5/15 = 1/3
3x - 30 = 39
3x = 69
x = 23
(2x + 10 ) * 4 = 10 *(x + 3)
8x + 40 = 10x + 30
2x = 10
x = 4.
AE = 2(5) + 10 = 20, hope this helped.
Answer:
x = 3.255 cm
Step-by-step explanation:
Given:
⇒ y = 10cm
⇒ θ = 19
To find:
⇒ Value of "n"
Solution
⇒ By Pythagoras theorem
⇒ Δ Sin θ = n/y
⇒ sin 19° = n/10
⇒ 0.3255 = n/10
⇒ n = 0.3255 × 10
⇒ n = 3.255 cm
Hence, the answer is = n = 3.255 cm.