Answer:
$14,277.80
Step-by-step explanation:
The standard formula for compound interest is given as;
A = P(1+r/n)^(nt) .....1
Where;
A = final amount/value
P = initial amount/value (principal)
r = rate yearly
n = number of times compounded yearly.
t = time of investment in years
For this case;
P = $7,400
t = 8 years
n = 4 (quarterly)
r = 9.5% = 0.095
Using equation 1.
A = $7,400(1+0.095/4)^(4×7)
A = $7,400(1.02375)^(28)
A = $7,400(1.929432606035)
A = $14,277.80
final amount/value after 8 years A =$14,277.80
Answer:
13/6
Step-by-step explanation:
1 Simplify \sqrt{8}
8
to 2\sqrt{2}2
2
.
\frac{2}{6\times 2\sqrt{2}}\sqrt{2}-(-\frac{18}{\sqrt{81}})
6×2
2
2
2
−(−
81
18
)
2 Simplify 6\times 2\sqrt{2}6×2
2
to 12\sqrt{2}12
2
.
\frac{2}{12\sqrt{2}}\sqrt{2}-(-\frac{18}{\sqrt{81}})
12
2
2
2
−(−
81
18
)
3 Since 9\times 9=819×9=81, the square root of 8181 is 99.
\frac{2}{12\sqrt{2}}\sqrt{2}-(-\frac{18}{9})
12
2
2
2
−(−
9
18
)
4 Simplify \frac{18}{9}
9
18
to 22.
\frac{2}{12\sqrt{2}}\sqrt{2}-(-2)
12
2
2
2
−(−2)
5 Rationalize the denominator: \frac{2}{12\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{2\sqrt{2}}{12\times 2}
12
2
2
⋅
2
2
=
12×2
2
2
.
\frac{2\sqrt{2}}{12\times 2}\sqrt{2}-(-2)
12×2
2
2
2
−(−2)
6 Simplify 12\times 212×2 to 2424.
\frac{2\sqrt{2}}{24}\sqrt{2}-(-2)
24
2
2
2
−(−2)
7 Simplify \frac{2\sqrt{2}}{24}
24
2
2
to \frac{\sqrt{2}}{12}
12
2
.
\frac{\sqrt{2}}{12}\sqrt{2}-(-2)
12
2
2
−(−2)
8 Use this rule: \frac{a}{b} \times c=\frac{ac}{b}
b
a
×c=
b
ac
.
\frac{\sqrt{2}\sqrt{2}}{12}-(-2)
12
2
2
−(−2)
9 Simplify \sqrt{2}\sqrt{2}
2
2
to \sqrt{4}
4
.
\frac{\sqrt{4}}{12}-(-2)
12
4
−(−2)
10 Since 2\times 2=42×2=4, the square root of 44 is 22.
\frac{2}{12}-(-2)
12
2
−(−2)
11 Simplify \frac{2}{12}
12
2
to \frac{1}{6}
6
1
.
\frac{1}{6}-(-2)
6
1
−(−2)
12 Remove parentheses.
\frac{1}{6}+2
6
1
+2
13 Simplify.
\frac{13}{6}
6
13
Done
Answer:
It is balance she need to use. Answer is B.
Answer:
The answer is 5.
Step-by-step explanation:
17 / 4 + 3 / 4 =
(17 × 4) + (3 × 4)
4 × 4 = 80 / 16 =
80 ÷ 16
16 ÷ 16
= 5
Hope this helps!