When an <span>inequality is true it is in the region that both are shaded, so the answer would be 1,1 and 2,2</span>
Answer:
True, see proof below.
Step-by-step explanation:
Remember two theorems about continuity:
- If f is differentiable at the point p, then f is continuous at p. This also applies to intervals instead of points.
- (Bolzano) If f is continuous in an interval [a,b] and there exists x,y∈[a,b] such that f(x)<0<f(y), then there exists some c∈[a,b] such that f(c)=0.
If f is differentiable in [0,4], then f is continuous in [0,4] (by 1). Now, f(0)=-1<0 and f(4)=3>0. Thus, we have the inequality f(0)<0<f(4). By Bolzano's theorem, there exists some c∈[0,4] such that f(c)=0.
Answer:
I would say it's B. false
Answer:
The answer your looking for is no, because in any certain type of triangle. Each triangle is 180 degrees like trying to find the missing angle of a triangle.
Step-by-step explanation: