The answer to this question is -154
Answer:
Respuesta D
Step-by-step explanation:
Paola afirma: Todo número compuesto par, se puede escribir como la multiplicación de factores primos.
Esta afirmación es cierta, pues es un caso de la afirmación de que todo número natural mayor que uno se puede escribir como multiplicación de números primos. A este proceso se le llama descomposición en factores primos.
Edwin afirma: Todo número compuesto impar se puede escribir como la suma de dos números primos.
Esta afirmación es falsa. Note que al sumar dos números impares de la forma 2k+1 y 2m+1 para k distinto de m, se obtiene

Es decir, la suma de dos números impares es siempre par.
Note que a excepción de 2, todo número primo es impar. Para que esta afirmación fuera cierta, necesariamente tendría que pasar que cualquier número impar k se escriba de la forma p+2 donde p es un número primo. Esto es equivalente que para cualquier número impar k, el número k-2 sea primo.
Basta con dar un ejemplo para ver que esto no pasa. Tomemos k=11. En este caso, k-2 = 9, el cuál no es un número primo. Entonces 11 no se puede descomponer como la suma de dos números primos.
Answer:
4 cm
Step-by-step explanation:
Both the area of a square and the area of a rectangle can be found by multiplying length x width. Because all of the sides of a square are equal, you get 64 when you multiply two sides together to find the area.
Since the rectangle has the same area as the square, that means the rectangle's width has to be a number that equals 64 when multiplied by 16.
So, 64/16 equals 4.
Please mark as brainliest ;)
Answer:
2: 6+4+6= 16
3: 6+6+9+9+18=48
4: 6+2+12+3+8= 36
I really hope this helped I’m not very Experienced in this.