Please answer!! 20 points ASAP
1 answer:
<u>Answer:</u>
The length of VI to the nearest tenth is 4 cm
Solution:
The plot is like a quadrilateral and the fences are built on the diagonal
We know that for quadrilateral both the diagonals are in same height,
So as per the picture, 
Now we know that 
Hence,





<u>Rounding off:</u>
- If the number that we are rounding is followed by 5 to 9, then the number has to be increased to the next successive number.
- If the number that we are rounding is followed by 1 to 4, then the number has to remain the same.
Here the number to be round off is 3.98, 9 belongs to the first category stated above. So, 3 is increased to 4.
Hence, the length of VI = 4 cm.
You might be interested in
Answer:
an octagon has 3 more sides then a pentagon
Step-by-step explanation:
A pentagon has 5 sides while a octagon has 8 sides and 8 -5=3
Answer:
7m² - 5m + 8 + 3/(m+3)
Step-by-step explanation:
7m³+16m²-7m+27
(7m³+21m²-5m²-15m+8m+24+3)/(m+3)
[7m²(m+3) - 5m(m+3) + 8(m+3) + 3]/(m+3)
7m² - 5m + 8 + 3/(m+3)
Answer: 
<u>Step-by-step explanation:</u>
![\text{Use the distance formula: }d_AB=\sqrt{(x_A-x_B)^2+(y_A-y_B)^2}\\where\ (X_A, y_A)=(-3, -2)\\and\ (x_B,y_B)=(4, -7)\\\\\\d_AB=\sqrt{(-3-4)^2+[-2-(-7)]^2}\\\\.\quad =\sqrt{(-7)^2+(5)^2}\\\\.\quad =\sqrt{49+25}\\\\.\quad =\boxed{\sqrt{74}}](https://tex.z-dn.net/?f=%5Ctext%7BUse%20the%20distance%20formula%3A%20%7Dd_AB%3D%5Csqrt%7B%28x_A-x_B%29%5E2%2B%28y_A-y_B%29%5E2%7D%5C%5Cwhere%5C%20%28X_A%2C%20y_A%29%3D%28-3%2C%20-2%29%5C%5Cand%5C%20%28x_B%2Cy_B%29%3D%284%2C%20-7%29%5C%5C%5C%5C%5C%5Cd_AB%3D%5Csqrt%7B%28-3-4%29%5E2%2B%5B-2-%28-7%29%5D%5E2%7D%5C%5C%5C%5C.%5Cquad%20%3D%5Csqrt%7B%28-7%29%5E2%2B%285%29%5E2%7D%5C%5C%5C%5C.%5Cquad%20%3D%5Csqrt%7B49%2B25%7D%5C%5C%5C%5C.%5Cquad%20%3D%5Cboxed%7B%5Csqrt%7B74%7D%7D)
Answer:
6 meters
Step-by-step explanation:
Area is length times width. If the width is 10 and the area is 60, then you would find 10 times ??? equals 60. Or 60 divided by 10. which is 6
Answer:
388 miles in one hour.
Step-by-step explanation:
You divide 1,940 by 5.