Answer:
answer is 4
Step-by-step explanation:
look at picture
No it is not a complete sentence
If x=3
Just replace the X with 3
So seven minus three equals four
If 3 is X than do 4 times 3 which that makes twelve.
Answer: a) √50
b) n = 1 + 7i
Step-by-step explanation:
first, the modulus of a complex number z = a + bi is
IzI = √(a^2 + b^2)
The fact that n is complex does not mean that n doesn't has a real part, so we must write our numbers as:
m = 2 + 6i
n = a + bi
Im + nI = 3√10
Im + n I = √(a^2 + b^2 + 2^2 + 6^2)= 3√10
= √(a^2 + b^2 + 40) = 3√10
a^2 + b^2 + 40 = 3^2*10 = 9*10 = 90
a^2 + b^2 = 90 - 40 = 50
√(a^2 + b^2 ) = InI = √50
The modulus of n must be equal to the square root of 50.
now we can find any values a and b such a^2 + b^2 = 50.
for example, a = 1 and b = 7
1^2 + 7^2 = 1 + 49 = 50
Then a possible value for n is:
n = 1 + 7i
Given:
A fourth-degree polynomial function has zeros 4, -4, 4i , and -4i .
To find:
The fourth-degree polynomial function in factored form.
Solution:
The factor for of nth degree polynomial is:

Where,
are n zeros of the polynomial.
It is given that a fourth-degree polynomial function has zeros 4, -4, 4i , and -4i. So, the factor form of given polynomial is:


![[\because a^2-b^2=(a-b)(a+b)]](https://tex.z-dn.net/?f=%5B%5Cbecause%20a%5E2-b%5E2%3D%28a-b%29%28a%2Bb%29%5D)
On further simplification, we get

![[\because i^2=-1]](https://tex.z-dn.net/?f=%5B%5Cbecause%20i%5E2%3D-1%5D)
Therefore, the required fourth degree polynomial is
.