Answer:
sorry I don’t have a notebook on me right now , hope I could help
Step-by-step explanation:
Answer:
<u>y = -x² + 4</u>
Step-by-step explanation:
The equation of the parabola in the vertex form is:
y = a (x-h)² + k
Where: (h,k) the coordinates of the vertex & a is a multiplier
The parabola has a vertex at ( 0,4 )
So, h = 0 , k = 4
∴ y = a (x-0)² + 4
∴ y = a x² + 4
The parabola passes through points ( 2,0 )
∴ 0 = a 2² + 4
∴ 4 a = -4 ⇒ a = -4/4 = -1
∴ y = -x² + 4
So, the equation of a parabola that has a vertex at ( 0,4 ) and passes through points ( 2,0 ) is <u>y = -x² + 4</u>
See the attached figure.
Answer:
The answer is 6+3b<or equal to 15
Step-by-step explanation:
Answer:
Lets a,b be elements of G. since G/K is abelian, then there exists k ∈ K such that ab * k = ba (because the class of ab,
is equal to
, thus ab and ba are equal or you can obtain one from the other by multiplying by an element of K.
Since K is a subgroup of H, then k ∈ H. This means that you can obtain ba from ab by multiplying by an element of H, k. Thus,
. Since a and b were generic elements of H, then H/G is abelian.