The volume of a rectangular prism is given by the multiplication of its three dimensions: if
are the width, height and length of the prism, the volume is

So, in your case, you have

It would be c that is the answer
Answer: x = 50
Concept:
Here, we need to know the idea of alternative interior angles and the angle sum theorem.
<u>Alternative interior angles</u> are angles that are formed inside the two parallel lines, and the values are equal.
The <u>angle sum theorem</u> implies that the sum of interior angles of a triangle is 180°
If you are still confused, please refer to the attachment below or let me know.
Step-by-step explanation:
<u>Given information:</u>
AC ║ DE
∠ABC = 85°
∠A = 135°
<u>Find the value of ∠BAC</u>
∠A + ∠BAC = 180° (Supplementary angle)
(135°) + ∠BAC = 180°
∠BAC = 45°
<u>Find the value of ∠BCA</u>
∠ABC + ∠BAC + ∠BCA = 180° (Angle sum theorem)
(85°) + (45°) + ∠BCA = 180°
∠BCA = 50°
<u>Find the value of x (∠EBC)</u>
∠EBC ≅ ∠BCA (Alternative interior angles)
Since, ∠BCA = 50°
Therefore, ∠EBC = 50°

Hope this helps!! :)
Please let me know if you have any questions
Answer:
AB=29; BC=27
Step-by-step explanation:
So they told us AB=4x+9 and that BC=5x+2, and AC=56 , now to help with the question you can draw this information on a number line. Now on a number you can see that basically AC=AB+BC.
So you would write it as such,,
4x+9+5x+2=56
Combine like terms
9x+11=56
Now you have to isolate the x by itself but first get rid of the 11.
9x+11-11=56-11
You would get
9x=45
Here you can divide 9 by both sides to isolate x.
9x/9=45/9
{x=5}
Now to find the value for both substitue x in the equations for both
1. AB=4x+9 where x is 5
4(5)+9 =AB
20+9 =AB
29=AB
You would do the same with BC
2. BC= 5x+2 where x is 5
5(5)+2= BC
25+2= BC
27=BC
If you want to check your answers you can just substitute x for 5 in the first equation we did where AC=AB+BC
Answer:
The probability that there are 2 or more fraudulent online retail orders in the sample is 0.483.
Step-by-step explanation:
We can model this with a binomial random variable, with sample size n=20 and probability of success p=0.08.
The probability of k online retail orders that turn out to be fraudulent in the sample is:

We have to calculate the probability that 2 or more online retail orders that turn out to be fraudulent. This can be calculated as:
![P(x\geq2)=1-[P(x=0)+P(x=1)]\\\\\\P(x=0)=\dbinom{20}{0}\cdot0.08^{0}\cdot0.92^{20}=1\cdot1\cdot0.189=0.189\\\\\\P(x=1)=\dbinom{20}{1}\cdot0.08^{1}\cdot0.92^{19}=20\cdot0.08\cdot0.205=0.328\\\\\\\\P(x\geq2)=1-[0.189+0.328]\\\\P(x\geq2)=1-0.517=0.483](https://tex.z-dn.net/?f=P%28x%5Cgeq2%29%3D1-%5BP%28x%3D0%29%2BP%28x%3D1%29%5D%5C%5C%5C%5C%5C%5CP%28x%3D0%29%3D%5Cdbinom%7B20%7D%7B0%7D%5Ccdot0.08%5E%7B0%7D%5Ccdot0.92%5E%7B20%7D%3D1%5Ccdot1%5Ccdot0.189%3D0.189%5C%5C%5C%5C%5C%5CP%28x%3D1%29%3D%5Cdbinom%7B20%7D%7B1%7D%5Ccdot0.08%5E%7B1%7D%5Ccdot0.92%5E%7B19%7D%3D20%5Ccdot0.08%5Ccdot0.205%3D0.328%5C%5C%5C%5C%5C%5C%5C%5CP%28x%5Cgeq2%29%3D1-%5B0.189%2B0.328%5D%5C%5C%5C%5CP%28x%5Cgeq2%29%3D1-0.517%3D0.483)
The probability that there are 2 or more fraudulent online retail orders in the sample is 0.483.