Answer:
97.8
Step-by-step explanation:
add together 97.3 +0.5
Answer:
Part a. t = 7.29 years.
Part b. t = 27.73 years.
Part c. p = $3894.00
Step-by-step explanation:
The formula for continuous compounding is: A = p*e^(rt); where A is the amount after compounding, p is the principle, e is the mathematical constant (2.718281), r is the rate of interest, and t is the time in years.
Part a. It is given that p = $2000, r = 2.5%, and A = $2400. In this part, t is unknown. Therefore: 2400 = 2000*e^(2.5t). This implies 1.2 = e^(0.025t). Taking natural logarithm on both sides yields ln(1.2) = ln(e^(0.025t)). A logarithmic property is that the power of the logarithmic expression can be shifted on the left side of the whole expression, thus multiplying it with the expression. Therefore, ln(1.2) = 0.025t*ln(e). Since ln(e) = 1, and making t the subject gives t = ln(1.2)/0.025. This means that t = 7.29 years (rounded to the nearest 2 decimal places)!!!
Part b. It is given that p = $2000, r = 2.5%, and A = $4000. In this part, t is unknown. Therefore: 4000 = 2000*e^(2.5t). This implies 2 = e^(0.025t). Taking natural logarithm on both sides yields ln(2) = ln(e^(0.025t)). A logarithmic property is that the power of the logarithmic expression can be shifted on the left side of the whole expression, thus multiplying it with the expression. Therefore, ln(2) = 0.025t*ln(e). Since ln(e) = 1, and making t the subject gives t = ln(2)/0.025. This means that t = 27.73 years (rounded to the nearest 2 decimal places)!!!
Part c. It is given that A = $5000, r = 2.5%, and t = 10 years. In this part, p is unknown. Therefore 5000 = p*e^(0.025*10). This implies 5000 = p*e^(0.25). Making p the subject gives p = 5000/e^0.25. This means that p = $3894.00(rounded to the nearest 2 decimal places)!!!
Jon has y stickers and uses 20
jon=y-20
the sisters share y-20 between 2 of them
therefore each sister receives
(y-20) divided by 2 -- (y-20)/2
I can’t see what the underlined word is
Answer:
B, C D
Step-by-step explanation:
Inequalities are the "alligators" < or > or the "alligators" with lines ≤ or ≥
< less than
>greater than
≤ less than or equal to
≥ greater than or equal to