Answer:
i believe the fist one is a and second is b
Step-by-step explanation:
lol hope it helped u
Solve for R:
R + 3 = -(1/2 + 6)
Put 1/2 + 6 over the common denominator 2. 1/2 + 6 = (2×6)/2 + 1/2:
R + 3 = -(2×6)/2 + 1/2
2×6 = 12:
R + 3 = -(12/2 + 1/2)
12/2 + 1/2 = (12 + 1)/2:
R + 3 = -(12 + 1)/2
12 + 1 = 13:
R + 3 = -13/2
Subtract 3 from both sides:
R + (3 - 3) = -13/2 - 3
3 - 3 = 0:
R = -13/2 - 3
Put -13/2 - 3 over the common denominator 2. -13/2 - 3 = (-13)/2 + (2 (-3))/2:
R = (-13)/2 - (3×2)/2
2 (-3) = -6:
R = (-6)/2 - 13/2
(-13)/2 - 6/2 = (-13 - 6)/2:
R = (-13 - 6)/2
-13 - 6 = -19:
Answer: R = (-19)/2
Answer:
B. 21.2
Step-by-step explanation:
Perimeter of ∆ABC = AB + BC + AC
A(-4, 1)
B(-2, 3)
C(3, -4)
✔️Distance between A(-4, 1) and B(-2, 3):




AB = 4 units
✔️Distance between B(-2, 3) and C(3, -4):




BC = 8.6 units (nearest tenth)
✔️Distance between A(-4, 1) and C(3, -4):




AC = 8.6 units (nearest tenth)
Perimeter of ∆ABC = 4 + 8.6 + 8.6 = 21.2 units
The answer would be 8. hope this helps
Let
x ----------> the height of the whole poster
<span>y ----------> the </span>width<span> of the whole poster
</span>
We need
to minimize the area A=x*y
we know that
(x-4)*(y-2)=722
(y-2)=722/(x-4)
(y)=[722/(x-4)]+2
so
A(x)=x*y--------->A(x)=x*{[722/(x-4)]+2}
Need to minimize this function over x > 4
find the derivative------> A1 (x)
A1(x)=2*[8x²-8x-1428]/[(x-4)²]
for A1(x)=0
8x²-8x-1428=0
using a graph tool
gives x=13.87 in
(y)=[722/(x-4)]+2
y=[2x+714]/[x-4]-----> y=[2*13.87+714]/[13.87-4]-----> y=75.15 in
the answer is
<span>the dimensions of the poster will be
</span>the height of the whole poster is 13.87 in
the width of the whole poster is 75.15 in