1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
3 years ago
8

A plane intersects a prism to form a cross section that is a polygon with five sides. The minimum number of sides that the polyg

on at the base of
the prism must have ls ..
Mathematics
1 answer:
antoniya [11.8K]3 years ago
4 0

Answer:

Since the plane if cutting through the prism to make 5 sides, than the original shape needs to have less than 5.

A prism, is a 3D shape, so you can't have a 2 sided shape.

Now you have a choice of 3+or 4 sides.

A 3 sides shape is a triangle, which also can't be cut into a 5 sided prism, so the answer would need to be 4.

Step-by-step explanation:

You might be interested in
Find the value of x. (Picture attached.)
Svet_ta [14]

Here, triangle AEN and ALG are similar.


We know that the ratio of corresponding sides of two similar triangles are equal. So,

\frac{21}{42} =\frac{2x-9}{(2x-9)+(x+7)}\\\\\frac{1}{2} =\frac{2x-9}{3x-2}\\\\ 3x-2=4x-18\\\\-2+18=4x-3x\\\\16=x\\\\x=16\\

5 0
3 years ago
Prove the following
fomenos

Answer:

Step-by-step explanation:

\large\underline{\sf{Solution-}}

<h2 /><h2><u>Consider</u></h2>

\rm \: \cos \bigg( \dfrac{3\pi}{2} + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( \dfrac{3\pi}{2} - x \bigg) + cot(2\pi + x) \bigg \}cos(23π+x)cos(2π+x)

<h2><u>W</u><u>e</u><u> </u><u>K</u><u>n</u><u>o</u><u>w</u><u>,</u></h2>

\rm \: \cos \bigg( \dfrac{3\pi}{2} + x \bigg) = sinx

\rm \: {cos \: (2\pi + x) }

\rm \: \cot \bigg( \dfrac{3\pi}{2} - x \bigg) \: = \: tanx

\rm \: cot(2\pi + x) \: = \: cotx

So, on substituting all these values, we get

\rm \: = \: sinx \: cosx \: (tanx \: + \: cotx)

\rm \: = \: sinx \: cosx \: \bigg(\dfrac{sinx}{cosx} + \dfrac{cosx}{sinx}

\rm \: = \: sinx \: cosx \: \bigg(\dfrac{ {sin}^{2}x + {cos}^{2}x}{cosx \: sinx}

\rm \: = \: 1=1

<h2>Hence,</h2>

\boxed{\tt{ \cos \bigg( \frac{3\pi}{2} + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( \frac{3\pi}{2} - x \bigg) + cot(2\pi + x) \bigg \} = 1}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h2>ADDITIONAL INFORMATION :-</h2>

Sign of Trigonometric ratios in Quadrants

  • sin (90°-θ)  =  cos θ
  • cos (90°-θ)  =  sin θ
  • tan (90°-θ)  =  cot θ
  • csc (90°-θ)  =  sec θ
  • sec (90°-θ)  =  csc θ
  • cot (90°-θ)  =  tan θ
  • sin (90°+θ)  =  cos θ
  • cos (90°+θ)  =  -sin θ
  • tan (90°+θ)  =  -cot θ
  • csc (90°+θ)  =  sec θ
  • sec (90°+θ)  =  -csc θ
  • cot (90°+θ)  =  -tan θ
  • sin (180°-θ)  =  sin θ
  • cos (180°-θ)  =  -cos θ
  • tan (180°-θ)  =  -tan θ
  • csc (180°-θ)  =  csc θ
  • sec (180°-θ)  =  -sec θ
  • cot (180°-θ)  =  -cot θ
  • sin (180°+θ)  =  -sin θ
  • cos (180°+θ)  =  -cos θ
  • tan (180°+θ)  =  tan θ
  • csc (180°+θ)  =  -csc θ
  • sec (180°+θ)  =  -sec θ
  • cot (180°+θ)  =  cot θ
  • sin (270°-θ)  =  -cos θ
  • cos (270°-θ)  =  -sin θ
  • tan (270°-θ)  =  cot θ
  • csc (270°-θ)  =  -sec θ
  • sec (270°-θ)  =  -csc θ
  • cot (270°-θ)  =  tan θ
  • sin (270°+θ)  =  -cos θ
  • cos (270°+θ)  =  sin θ
  • tan (270°+θ)  =  -cot θ
  • csc (270°+θ)  =  -sec θ
  • sec (270°+θ)  =  cos θ
  • cot (270°+θ)  =  -tan θ
7 0
3 years ago
Read 2 more answers
What is the value of StartFraction 1.6 times 10 Superscript 14 Baseline Over 3.2 times 10 Superscript 7 Baseline EndFraction in
Helga [31]

Answer:

5.0 times 10 Superscript 6

Step-by-step explanation:

What is the value of StartFraction 1.6 times 10 Superscript 14 Baseline Over 3.2 times 10 Superscript 7 Baseline?

This is represented mathematically as:

1.6 × 10¹⁴/ 3.2 × 10⁷

Solving for this

1.6 × 10¹⁴/ 3.2 × 10⁷

= [1.6/3.2] × 10¹⁴-⁷

= 5 × 10⁶

= 5.0 times 10 Superscript 6

4 0
3 years ago
Kyle had 1/3 of a large pizza left. He wants to split it with his
barxatty [35]
They will each get 1/6 of the pizza.
7 0
3 years ago
Read 2 more answers
Two similiar rectangles have corresponding sides in the ratio 10:3. What is the ratio of their areas
lianna [129]

Answer:

Step-by-step explanation:

The ratio of its areas is equal to

Step-by-step explanation:

we know that

If two figures are similar, then the ratio of its areas is equal to the scale factor squared

In this problem the scale factor is equal to the ratio 10:3

Let

z-------> the scale factor

so

z2=(10/3)2=100/9

7 0
3 years ago
Other questions:
  • What is 6/12 + 3/12 + 4/12+1 8/12+2 9/12?Please turn into mixed number
    12·2 answers
  • I have a lot sorry
    12·1 answer
  • What is 69+48+57+70+66
    7·2 answers
  • Taking a discount of 50% off followed by a discount of 50% off results in a total discount of _____.
    9·1 answer
  • Help me please<br> Solve the system algebraically using substitution.
    9·1 answer
  • 2x - 5y = -6<br> -2x + 7y = 14
    5·1 answer
  • A news channel on cable T.V. polled politicians on an issue to find out who agreed with a court decision. This is the graphic th
    6·1 answer
  • A gumball machine contains gumballs in several different colors.
    7·1 answer
  • B
    11·1 answer
  • When loaded with bricks, a lorry has a mass of 11 600 kg
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!