1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andreyy89
3 years ago
12

If the coordinates of a polygon graphed in the first quadrant with one vertex on the origin are (0,0), (a,0), (a,a), (0,a), then

what is the most precise name for the polygon?
Mathematics
1 answer:
AleksAgata [21]3 years ago
8 0
We are given the coordinates of a polygon that are (0,0), (a,0), (a,a), (0,a). we can project these coordinates in a plot and see that there are four sides of the polygon. The sides of the polygon re equal and perpendicular to each other. Hence the polygon is a square
You might be interested in
Hhhhhhhhhhhhhhhheeeeeeeeeeeeeeeelllllllllllllllllllllppppppppppppp
m_a_m_a [10]
Literally whatever number is in the parenthesis, if it’s negative like -4 then you could down 4 lines of squares and put a dot. if it’s positive then go up
7 0
2 years ago
Read 2 more answers
What’s The greatest common factor for 28 42 and 56
Aliun [14]

Answer:

The answer is 14

Step-by-step explanation:

14x2=28

14x3=42 so the greatest common factor is 14

7 0
3 years ago
HELP PLEASE
jok3333 [9.3K]

Answer:

b

Step-by-step explanation:

I mean I believe its b it looks like theres three

3 0
3 years ago
Cual es la respuesta de 7+105-8245+/894216
leonid [27]
Puede tomar una gota mejor para enter
4 0
2 years ago
PLEASE HELP QUICKLY 25 POINTS
Natalija [7]

Answer:

○ \displaystyle \pi

Step-by-step explanation:

\displaystyle \boxed{y = 3sin\:(2x + \frac{\pi}{2})} \\ y = Asin(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 0 \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \hookrightarrow \boxed{-\frac{\pi}{4}} \hookrightarrow \frac{-\frac{\pi}{2}}{2} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{\pi} \hookrightarrow \frac{2}{2}\pi \\ Amplitude \hookrightarrow 3

<em>OR</em>

\displaystyle \boxed{y = 3cos\:2x} \\ y = Acos(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 0 \\ Horisontal\:[Phase]\:Shift \hookrightarrow 0 \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{\pi} \hookrightarrow \frac{2}{2}\pi \\ Amplitude \hookrightarrow 3

You will need the above information to help you interpret the graph. First off, keep in mind that although this looks EXACTLY like the cosine graph, if you plan on writing your equation as a function of <em>sine</em>, then there WILL be a horisontal shift, meaning that a C-term will be involved. As you can see, the photograph on the right displays the trigonometric graph of \displaystyle y = 3sin\:2x,in which you need to replase "cosine" with "sine", then figure out the appropriate C-term that will make the graph horisontally shift and map onto the <em>sine</em> graph [photograph on the left], accourding to the horisontal shift formula above. Also keep in mind that the −C gives you the OPPOCITE TERMS OF WHAT THEY <em>REALLY</em> ARE, so you must be careful with your calculations. So, between the two photographs, we can tell that the <em>sine</em> graph [photograph on the right] is shifted \displaystyle \frac{\pi}{4}\:unitto the right, which means that in order to match the <em>cosine</em> graph [photograph on the left], we need to shift the graph BACKWARD \displaystyle \frac{\pi}{4}\:unit,which means the C-term will be negative, and by perfourming your calculations, you will arrive at \displaystyle \boxed{-\frac{\pi}{4}} = \frac{-\frac{\pi}{2}}{2}.So, the sine graph of the cosine graph, accourding to the horisontal shift, is \displaystyle y = 3sin\:(2x + \frac{\pi}{2}).Now, with all that being said, in this case, sinse you ONLY have a graph to wourk with, you MUST figure the period out by using wavelengths. So, looking at where the graph WILL hit \displaystyle [-1\frac{3}{4}\pi, 0],from there to \displaystyle [-\frac{3}{4}\pi, 0],they are obviously \displaystyle \pi\:unitsapart, telling you that the period of the graph is \displaystyle \pi.Now, the amplitude is obvious to figure out because it is the A-term, but of cource, if you want to be certain it is the amplitude, look at the graph to see how low and high each crest extends beyond the <em>midline</em>. The midline is the centre of your graph, also known as the vertical shift, which in this case the centre is at \displaystyle y = 0,in which each crest is extended <em>three units</em> beyond the midline, hence, your amplitude. So, no matter how far the graph shifts vertically, the midline will ALWAYS follow.

I am delighted to assist you at any time.

7 0
2 years ago
Read 2 more answers
Other questions:
  • 10. Solve for m (literal equations): y=mx+b
    6·1 answer
  • 182,886 rounded to the nearest tenth
    7·2 answers
  • If 29 of a song plays in 13 minute, what fraction of the song plays in 1 minute? Write a number sentence involving division that
    11·1 answer
  • Consider the function:
    10·2 answers
  • WHOEVER ANSWER IS FIRST AND CORRET WILL GET BRAINLIST
    5·2 answers
  • Carl is boarding a plane.
    14·1 answer
  • Write an addition expression using negative integers to show the number of red apples the store sold
    9·1 answer
  • The greatest common factor of each term in the expression 20 x minus 16 x y is 4x. Which choice shows the expression written as
    7·1 answer
  • Martin was given 10 math problems, and he has answered 7 of them. What percent of the problems does Martin have
    9·1 answer
  • Given f(x) = -x + 5, find f(-3).<br> Answer:
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!