The potential energy changes into kinetic energy. :)
<em>Hardness is a measure of how resistant solid matter is to various kinds of permanent shape change when a force is applied</em> <em>Macroscopic hardness is generally characterized by</em> <em>strong intermolecular bonds</em>, <em>but the behavior of solid materials under force is complex; therefore,</em> <em>there are different measurements of hardness</em>: <em>scratch hardness, indentation hardness, and rebound hardness. Hardness is dependent on ductility, elastic stiffness, plasticity, strain, strength, toughness, viscoelasticity, and viscosity. Common examples of hard matter are ceramics, concrete, certain metals, and super hard materials, which can be contrasted with soft matter.</em>
Answer:
The correct answer will be- Golgi apparatus
Explanation:
The proteins are synthesized in the ribosomes whether they are attached to the endoplasmic reticulum or free. These synthesized proteins enter the lumen of the endoplasmic reticulum where they get packaged to go to Golgi apparatus.
The Golgi apparatus is the site of post-translational modification of the secreted proteins like ubiquitination, acetylation, phosphorylation and many others.
Thus, the Golgi apparatus is the correct answer.
1. Cell starts into mitosis phase of the cell cycle.
2. Helicase begins to break the hydrogen bonds between the nitrogen bases. (The double helix has to be unwound in order to expose the nucleotides)
3. DNA polymerase attach the free-floating nucleotides to the exposed nitrogen bases. (this allows a new DNA strand to be made on the existing one)
4. Free floating nucleotides pair up with exposed nitrogen bases (this is what really builds the new strand, based around the template strand)
5. Two new molecules of DNA are created
Statements:
Adenine
Cytosine (Car in the Garage, Apple in a Tree is a good trick to know how they pair)
DNA
Replication
Double helix