The walkway is 1.5 m wide.
The area of the pool is 12(6) = 72 m².
Adding a walkway of unknown width, x, around all 4 sides of the pool increases the width by 2x and the length by 2x; thus the area of the entire pool and walkway together would be given by
(12+2x)(6+2x)
We know that the area of just the walkway is 9 m² less than the area of the pool. This means that:
(12+2x)(6+2x)-72 = 72-9
Multiplying through we have:
12*6+12*2x+2x*6+2x*2x - 72 = 63
72 + 24x + 12x + 4x² - 72 = 63
24x + 12x + 4x² = 63
36x + 4x² = 63
Writing in standard form we have:
4x² + 36x = 63
We want to set it equal to 0 to solve, so subtract 63 from both sides:
4x² + 36x - 63 = 63 - 63
4x² + 36x - 63 = 0
Using the quadratic formula,

Since a negative width makes no sense, the walkway is 1.5 m wide.
Answer:
65.6666666666666666666666666666666666666666667
Step-by-step explanation:
180+17=197. 197/3=65.66666666666666666666667
Answer:
2.25π m²
Step-by-step explanation:
The area (A) of a circle is calculated using the formula
A = πr² ← r is the radius
here the diameter = 3
The radius is half the diameter, that is radius = 1.5, so
A = π × 1.5² = 2.25π m²