We have given the table of number of male and female contestants who did and did not win prize
The probability that a randomly selected contestant won prize given that contestant was female is
P(contestant won prize / Contestant was female)
Here we will use conditional probability formula
P(A/B) =
Let Event A = selected contestant won prize and
event B = selected contestant is famale
Then numerator entity will
P(A and B) = P(Contestant won prize and Contestant is female)
= Number of female contestant who won prize / Total number of contestant
= 3 /(4+9+3+10)
= 3 / 26
P(A and B) = 0.1153
P(B) = P(contestant is female )
= Number of female contestant / Total number of contestants
= (3+10) / 26
P(B) = 0.5
Now P(A / B) =
= 0.1153 / 0.5
P(A / B) = 0.2306
The probability that randomly selected contestant won prize given that contestant is female is 0.2306
Converting probability into percentage 23.06%
The percentage that randomly selected contestant won prize given that contestant is female is 23%
Answer: 6
Step-by-step explanation: DE is 4+2 so EF would be the same if it is equal.
Answer:
Linear functions
Step-by-step explanation:
Answer:
The answer is c
Step-by-step explanation:
The middle problem is adding, the others are taking away, so C is the correct answer