To get the average rate of change (ARC) of f(x) over [x1, x2], we use the formula:
ARC = ( f(x2) - f(x2) ) / (x2 - x1)
From the graph
f(2) = 4
f(-2) = 4
Plugging in the values into the formula:
ARC = (4 - 4) / (2 - (-2) )
ARC = 0
The points connecting (-2,4) amd (2,4) is a horizontal line that is the rate of change is 0.
Answer:
- 1) 64, 2) 6, 3) 26, 4) 33
Step-by-step explanation:
<h3>#1</h3>
<u>Sum of interior angles is 180</u>
- 70 + 46 + x = 180
- 116 + x = 180
- x = 64
<h3>#2</h3>
<u>Sum of interior angles is 180</u>
- 84 + 7x + 1 + 9x - 1 = 84
- 16x + 84 = 180
- 16x = 96
- x = 6
<h3>#3</h3>
<u>Vertical angles are same, the sum of remaining angles is same for both triangles:</u>
- 35 + 25 = 34 + x
- 60 = 34 + x
- x = 60 - 34
- x = 26
<h3>#4</h3>
<u>Exterior angle is same as the sum of non-adjacent interior angles:</u>
- 5x - 7 + 6x + 3 = 84
- 11x - 4 = 84
- 11x = 88
- x = 8
- m∠G = 5x - 7 = 5*8 - 7 = 40 - 7 = 33
It will be less than the first factor.
X² + x - 12 / x² - x - 20 ÷ 3x² - 24x + 45 / 12x² - 48x - 60
x² + x - 12 / x² - x - 20 * 12x² - 48x - 60 / 3x² - 24x + 45
<u>(x² + x - 12)(12x² - 48x - 60)</u>
(x² - x - 20)(3x² - 24x + 45)
<span><u>12x^4 - 48x³ - 60x² + 12x³ - 48x² - 60x - 144x² + 576x + 720</u>
</span>3x^4 - 24x³ + 45x² - 3x³ + 24x² - 45x - 60x² + 480x - 900
<span>
<u>12x^4 - 48x³ + 12x³ - 60x² - 48x² - 144x² - 60x + 576x + 720</u></span>
3x^4 - 24x³ - 3x³ + 45x² + 24x² - 60x² - 45x + 480x - 900
<u>12x^4 - 36x³ - 252x² + 516x + 720</u>
3x^4 - 27x³ + 9x² + 435x - 900
<u>12(x^4 - 3x³ - 21x² + 43x + 60) </u>
3(x^4 - 9x³ + 3x² + 145x + 300)
<u>4(</u><span><u>x^4 - 3x³ - 21x² + 43x + 60) </u>
</span><span> (x^4 - 9x³ + 3x² + 145x + 300)</span>