Answer:
<h3>See explanations below</h3>
Step-by-step explanation:
1) Given the recursive function An=an-1 + 3 when a1 = 5, we are to find the first four terms;
First term a1 = 5
a2 = a1 +3
a2 = 5 + 3
a2 = 8
a3 = a2 + 3
a3 = 8+3
a3 = 11
a4 = a3 + 3
a4 = 11 + 3
a4 = 14
<em>The first four terms are 5, 8, 11 and 14</em>
<em></em>
<em>2) </em>For the recursive function An=an-1 + 2/3 when a1 = 1
a2 = a1 + 2/3
a2 = 1 + 2/3
a2 = 5/3
a3 = a2 + 2/3
a3 = 5/3 + 2/3
a3 = 7/3
a4 = a3 + 2/3
a4 = 7/3 + 2/3
a4 = 9/3
a4 = 3
<em>Hence the first four terms of the sequence are 2/3, 5/3, 7/3, 3</em>
<em></em>
3) For the recursive function An=an-1 + 12 when a1=30
a2 = a1 + 12
a2 = 30 + 12
a2 = 42
a3 = a2 +12
a3 = 42 + 12
a3 = 54
a4 = a3 + 12
a4 = 54+12
a4 = 66
<em>Hence the first four terms of the sequence are 30, 42, 54, 66</em>
Answer:
The answer to your question is -3, 7
Step-by-step explanation:
Data
x + y = 4 ------------ Equation l
7x + 9y = 42 ----------- Equation ll
Process
1.- Solve the system by elimination
- Multiply equation l by -7
-7x - 7y = - 28
7x+9y = 42
2.- Simplify
0 + 2y = 14
3.- Solve for y
y = 14/2
y = 7
4.- Substitute y in equation l to find x
x + 7 = 4
Solve for x
x = 4 - 7
x = -3
Answer: 
Step-by-step explanation:
Given
The unit cost is given by

find the derivative of the unit cost and equate it to zero to obtain the minimum value

Substitute 140 for
in the cost function, we get
![C(140)=0.6[140]^2-168(140)+30,389\\C(140)=11,760-23,520+30,389\\C(140)=\$18,629](https://tex.z-dn.net/?f=C%28140%29%3D0.6%5B140%5D%5E2-168%28140%29%2B30%2C389%5C%5CC%28140%29%3D11%2C760-23%2C520%2B30%2C389%5C%5CC%28140%29%3D%5C%2418%2C629)
Answer:
2,411
Step-by-step explanation:
Answer:
Step-by-step explanation:
4.
2ab cos C=a²+b²-c²
2×31×14 cos C=31²+14²-40²
868 cos C=961+196-1600=-443
cos C=-443/868
C=cos^{-1}(-443/868)≈120.688≈120.69°
5.
by sine formula
m∠B=180-(62+55)=180-117=63°
