Find f(x) and g(x) so that the function can be described as y = f(g(x)). y = Four divided by x squared. + 9
1 answer:
• Interpretation I:
Find f and g, so that
4
(f o g)(x) = —————
x² + 9
Well, there is more than one possibility.
4
For instance, It can be: f(x) = —— and g(x) = x² + 9,
x
and then you have
(f o g)(x) = f[ g(x) ]
4
(f o g)(x) = ————
g(x)
4
(f o g)(x) = ————— ✔
x² + 9
4
Another possibility for that composition: f(x) = ————— and g(x) = x²,
x + 9
and for those, you get
(f o g)(x) = f[ g(x) ]
4
(f o g)(x) = ———————
[ g(x) ]² + 9
4
(f o g)(x) = ————— ✔
x² + 9
As you can see above, there are many ways to find f and g, so the composition of those is (f o g)(x) = 4/(x² + 9).
—————
• Interpretation II:
Find f and g, so that
4
(f o g)(x) = —— + 9
x²
4
It can be: f(x) = x + 9 and g(x) = ——
x²
and then you have
(f o g)(x) = f[ g(x) ]
(f o g)(x) = g(x) + 9
4
(f o g)(x) = —— + 9
x²
2
or it could be also: f(x) = x² + 9 and g(x) = ——
x
and you have again
(f o g)(x) = f[ g(x) ]
(f o g)(x) = [ g(x) ]² + 9
(f o g)(x) = [ 2/x ]² + 9
(f o g)(x) = (2²/x²) + 9
4
(f o g)(x) = —— + 9 ✔
x²
As you can see above, there are many ways to find f and g, so the composition of those is (f o g)(x) = (4/x²) + 9.
I hope this helps. =)
Tags: <em>composite functions rational quadratic linear function algebra</em>
You might be interested in
Answer:
2/5 is less than 2/3
Step-by-step explanation:
bc the bottom number is how many in total and in 2/3 the number on the top only needs 1 more to be a whole.
The correct answer is “A” 40,leg
You subtract the % that the sale is and take it away from 100%. You get 75% then take the original price and divide it by .75
I am really sorry but I didn’t get the answe
m = (y2-y1)/(x2-x1)
m = (6-4)/(4-0)
m = 2/4
y = mx + c
6 = (2/4)(4) + c
c = 4
Thus, the equation is y = (2/4)x +4