Answer
a. 28˚
b. 76˚
c. 104˚
d. 56˚
Step-by-step explanation
Given,
∠BCE=28° ∠ACD=31° & line AB=AC .
According To the Question,
- a. the angle between a chord and a tangent through one of the end points of the chord is equal to the angle in the alternate segment.(Alternate Segment Theorem) Thus, ∠BAC=28°
- b. We Know The Sum Of All Angles in a triangle is 180˚, 180°-∠CAB(28°)=152° and ΔABC is an isosceles triangle, So 152°/2=76˚
thus , ∠ABC=76° .
- c. We know the Sum of all angles in a triangle is 180° and opposite angles in a cyclic quadrilateral(ABCD) add up to 180˚,
Thus, ∠ACD + ∠ACB = 31° + 76° ⇔ 107°
Now, ∠DCB + ∠DAB = 180°(Cyclic Quadrilateral opposite angle)
∠DAB = 180° - 107° ⇔ 73°
& We Know, ∠DAC+∠CAB=∠DAB ⇔ ∠DAC = 73° - 28° ⇔ 45°
Now, In Triangle ADC Sum of angles in a triangle is 180°
∠ADC = 180° - (31° + 45°) ⇔ 104˚
- d. ∠COB = 28°×2 ⇔ 56˚ , because With the Same Arc(CB) The Angle at circumference are half of the angle at the centre
For Diagram, Please Find in Attachment
It seems that the four graphs are the same and they do not have a negative change rate in the interval 0 to 2 in the x-axis.
A negative change rate means that when x increases the value of the function (y) decreases; this is, the function is decreasing in the interval being estudied, which is the same that going downward.
So, you must look for in your graphs where the equation is going downward.
For example, in the graph attached, that happens in any interval from negative infitity to 1.5.
The vertex will help you to identify it.
Given that the graph goes downward from negative infinity to the vertex, any interval that includes that range will have negative change.
You must look for a parabola that opens upward and whose vertex is in x = 2.
Read more on Brainly.com - brainly.com/question/3774202#readmore
Answer:
3.43%
Step-by-step explanation:
362-350=12
12:350*100 =
(12*100):350 =
1200:350 = 3.43
Sam will need 30 rolls of 30 inches of paper
Answer:
C.
Step-by-step explanation:
the standard form of a QE is ax2+bx+c. This includes x squared, and when graphed, it forms the graph of a QE, a parabola.
Hope this helps!