You can expect 76 students in 2018 because from 2014 to 2015 it went up 6, then 8, then 10 so it would increase 12 students from 2017 to 2018
Considerando las fórmulas para el perímetro y el área de un rectángulo, hay que se chega en una <u>eccuación cuadrática sin solución</u>, o sea, las medidas no son posibles y la persona estaba mintiendo.
<h3>¿Cuál es la fórmula para el perímetro y el área de un rectángulo?</h3>
Considerando que las dimensiones son l y w, hay que:
- El perímetro es: P = 2(l + w).
El <u>perímetro es de 18 m</u>, o sea:
2(l + w) = 18
l + w = 9
l = 9- w.
El <u>área es de 21 m²</u>, o sea:
lw = 21
(9- w)w = 21
-w² + 9 - 21 = 0
w² - 9w + 21 = 0
El discriminante es dado por:
D = 9² - 4 x 1 x 21 = -3.
El discriminante negativo implica que la <u>eccuación cuadrática no tiene solución</u>, o sea, las medidas no son posibles y la persona estaba mintiendo.
Puede-se aprender más a cerca de el perímetro y el área de un rectángulo en brainly.com/question/26475963
#SPJ1
The point-slope form:

We have the points (5, -3) and (-2, 9). Substitute:

Answer:
Step-by-step explanation:
There are 3 ways to find the other x intercept.
1) Polynomial Long Division.
Divide x^2 - 3x + 2 by the binomial x - 2, because by the Factor Theorem if a is a root of a polynomial then x - a is a factor of said polynomial.
2) Just solving for x when y = 0, by using the quadratic formula.
.
So the other x - intercept is at (1, 0)
3) Using Vietta's Theorem regarding the solutions of a quadratic
Namely, the sum of the solutions of a quadratic equation is equal to the quotient between the negative coefficient of the linear term divided by the coefficient of the quadratic term.

And the product between the solutions of a quadratic equation is just the quotient between the constant term and the coefficient of the quadratic term.

These relations between the solutions give us a brief idea of what the solutions should be like.
Answer:
8.12
Step-by-step explanation:
we first multiply 8 by 12 and we will get 96 as our answer