Answer:
a) 
b) 
c) 
With a frequency of 4
d) 
<u>e)</u>
And we can find the limits without any outliers using two deviations from the mean and we got:

And for this case we have two values above the upper limit so then we can conclude that 1500 and 3000 are potential outliers for this case
Step-by-step explanation:
We have the following data set given:
49 70 70 70 75 75 85 95 100 125 150 150 175 184 225 225 275 350 400 450 450 450 450 1500 3000
Part a
The mean can be calculated with this formula:

Replacing we got:

Part b
Since the sample size is n =25 we can calculate the median from the dataset ordered on increasing way. And for this case the median would be the value in the 13th position and we got:

Part c
The mode is the most repeated value in the sample and for this case is:

With a frequency of 4
Part d
The midrange for this case is defined as:

Part e
For this case we can calculate the deviation given by:

And replacing we got:

And we can find the limits without any outliers using two deviations from the mean and we got:

And for this case we have two values above the upper limit so then we can conclude that 1500 and 3000 are potential outliers for this case
Given rational expression is

Now we need to find the restricted values if any for this rational expression.
Restricted values means the possible values of the used variable (x) that will make denominator 0 as division by 0 is not defined.
So to find the restricted values, we just set denominator equal to 0 and solve for x


2x=0 or 4x+1=0
x=0 or 4x=-1
x=0 or x=-1/4
Hence final answer is x=0, -1/4
Hundreds because the answer is 251 so the 2 is in the hundreds