1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kobusy [5.1K]
4 years ago
5

Use the disk method or the shell method to find the volume of the solid generated by revolving the region bounded by the graphs

of the equations about each given line. y=6/x^2 ,y=0,x=1,x=3 .
1) Find the y-axis
2) Find the line y=6

Mathematics
1 answer:
JulsSmile [24]4 years ago
5 0

Answer:

1) V = 12 π  ㏑ 3

2) \mathbf{V = \dfrac{328 \pi}{9}}

Step-by-step explanation:

Given that:

the graphs of the equations about each given line is:

y = \dfrac{6}{x^2}, y =0 , x=1 , x=3

Using Shell method to determine the required volume,

where;

shell radius = x;   &

height of the shell = \dfrac{6}{x^2}

∴

Volume V = \int ^b_{x-1} \ 2 \pi ( x) ( \dfrac{6}{x^2}) \ dx

V = \int ^3_{x-1} \ 2 \pi ( x) ( \dfrac{6}{x^2}) \ dx

V = 12 \pi \int ^3_{x-1} \dfrac{1}{x} \ dx

V = 12 \pi ( In \ x ) ^3_{x-1}

V = 12 π ( ㏑ 3 - ㏑ 1)

V = 12 π ( ㏑ 3 - 0)

V = 12 π  ㏑ 3

2) Find the line y=6

Using the disk method here;

where,

Inner radius r(x) = 6 - \dfrac{6}{x^2}

outer radius R(x) = 6

Thus, the volume of the solid is as follows:

V = \int ^3_{x-1} \begin {bmatrix}  \pi (6)^2 - \pi ( 6 - \dfrac{6}{x^2})^2  \end {bmatrix} \ dx

V  =  \pi (6)^2 \int ^3_{x-1} \begin {bmatrix}  1 - \pi ( 1 - \dfrac{1}{x^2})^2  \end {bmatrix} \ dx

V  =  36 \pi \int ^3_{x-1} \begin {bmatrix}  1 -  ( 1 + \dfrac{1}{x^4}- \dfrac{2}{x^2})  \end {bmatrix} \ dx

V  =  36 \pi \int ^3_{x-1} \begin {bmatrix}  - \dfrac{1}{x^4}+ \dfrac{2}{x^2} \end {bmatrix} \ dx

V  =  36 \pi \int ^3_{x-1} \begin {bmatrix}  {-x^{-4}}+ 2x^{-2} \end {bmatrix} \ dx

Recall that:

\int x^n dx = \dfrac{x^n +1}{n+1}

Then:

V = 36 \pi ( -\dfrac{x^{-3}}{-3}+ \dfrac{2x^{-1}}{-1})^3_{x-1}

V = 36 \pi ( \dfrac{1}{3x^3}- \dfrac{2}{x})^3_{x-1}

V = 36 \pi \begin {bmatrix} ( \dfrac{1}{3(3)^3}- \dfrac{2}{3}) - ( \dfrac{1}{3(1)^3}- \dfrac{2}{1})    \end {bmatrix}

V = 36 \pi (\dfrac{82}{81})

\mathbf{V = \dfrac{328 \pi}{9}}

The graph of equation for 1 and 2 is also attached in the file below.

You might be interested in
If 10 is subtracted from a number,the result is 23.Find the number.
blondinia [14]
33 is the number. So 33 subtract 10 equals 23.
3 0
3 years ago
Two thirds of a number decreased by six is two. what is the number?
Kisachek [45]
Answer:  The number is:  " 12 ". 

____________________________________
  Let "x" represent "the unknown number" (for which we wish to solve.

The expression:

\frac{2}{3} x  <span>− 6  =  2  ;   Solve for "x" ;  
</span>_______________________________________________
Method 1) 

   Add "6" to EACH SIDE of the equation;
_______________________________________________
       →   \frac{2}{3} x  − 6  + 6 =  2 + 6 ;

to get:

      →   \frac{2}{3} x = 8 ;
______________________________________________
Multiply each side of the equation by "\frac{3}{2}" ; to isolate "x" on one side of the equation ; and to solve for "x" ;
______________________________________________
     → \frac{3}{2} * \frac{2}{3} x = 8 * \frac{3}{2} ;

       →  x = 8 * \frac{3}{2} ;

                = \frac{8}{1} * \frac{3}{2} ;

                = \frac{8*3}{1*2} ;
       
                = \frac{24}{2} ;
 
                = <span>1<span>2 .</span></span>
______________________________________________
  x =  12 .
______________________________________________
Method 2)
______________________________________________
\frac{2}{3} x  − 6  =  2  ;   Solve for "x" ; 

   Add "6" to EACH SIDE of the equation;
_______________________________________________
       →   \frac{2}{3} x  − 6  + 6 =  2 + 6 ;

to get:
      →   \frac{2}{3} x = 8 ;
______________________________________________
Multiply each side of the equation by "3" ; to get rid of the "fraction" ;
               → 3 * \frac{2}{3} x = 8 * 3  ;
               → \frac{3}{1} * \frac{2}{3} x = 8 * 3 ;
               → \frac{3*2}{1*3}  x = 8 * 3 
               → \frac{6}{3} x = 24 ; 

                → 2x = 24 ;

 →  Divide each side of the equation by "2" ; to isolate "x" on one side of the equation; & to solve for "x" : 
 
                    2x / 2 = 24 / 2  ;

                        x = 12 .
__________________________________________________
Method 3).
__________________________________________________
\frac{2}{3} x  − 6  =  2  ;   Solve for "x" ;  
_______________________________________________
Add "6" to EACH SIDE of the equation;
_______________________________________________
       →   \frac{2}{3} x  − 6  + 6 =  2 + 6 ;

to get:

      →   \frac{2}{3} x = 8 ;
______________________________________________
Now, divide each side of the equation by " \frac{2}{3} " ;
  to isolate "x" on one side of the equation; & to solve for "x" ;
___________________________________________________
{\frac{2}{3} x }  /  {\frac{2}{3}}  =  8 / {\frac{2}{3}} ;

to get:  x =  8 / {\frac{2}{3}} ;

                =  8 * (\frac{3}{2} ;

                =  \frac{8}{1}  *  \frac{3}{2} ;

                =  \frac{8*3}{1*2} ;

                =  \frac{24}{2} ;

                = 12 ; 
___________________________________________
                         x = 12 .
___________________________________________
NOTE:  Variant:  (in "Methods 2 & 3") :
___________________________________________
At the point where:
___________________________________________
 =  8 * (\frac{3}{2}) ;

  =  \frac{8}{1}  *  \frac{3}{2} ;
__________________________________________
  We can cancel out the "2" to a "1" ; and we can cancel out the "8" to a "4" ;
__________________________________________
  {since: "8÷2 = 4" ; and since:  "2÷2 =1" } ;
__________________________________________
and we can rewrite the expression:
__________________________________________
 \frac{8}{1}  *  \frac{3}{2} ;
__________________________________________
as:   \frac{4}{1}  *  \frac{3}{1} ; 
__________________________________________
which equals:
__________________________________________
→  \frac{4*3}{1*1} ; 

   =   \frac{12}{1} ;

            =  12 .
__________________________________________
         x = 12 . 
__________________________________________
Answer:  The number is:  " 12 ". 
__________________________________________
8 0
4 years ago
90g of sugar will make how much 15% syrup?<br><br> Plz put the equation down. Thx
Andrej [43]
15% as decimal is 0.15 so 90g*0.15= 13.5
so the equation is 90g*15%=13.5
6 0
3 years ago
skateboard is priced for $38. They are having a sale for 20% off. how much is the discount and what is the selling price
olga2289 [7]

Answer:

18$

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
If HJ = 7x-27, find the value of x.​
daser333 [38]

Answer:

x = HJ/7 + 27/7

Step-by-step explanation:

Hope this helps!

4 0
3 years ago
Read 2 more answers
Other questions:
  • If f(x) = -x+7, what is f(15)? (I got -8, which was incorrect) Thanks!
    9·2 answers
  • the ratio of apples to oranges in a fruit basket are 3 to 5. if there are 40 apples and oranges altogether, how many apples must
    7·1 answer
  • Consider the two-way table. Group 1 Group 2 Category 1 30 90 Category 2 14 32 Complete the table below to show the relative freq
    13·2 answers
  • A pool table is 8 feet long and 4 feet wide. How far is it from one corner pocket to the diagonally opposite corner pocket?
    14·2 answers
  • Find the area of the rectangle with: l=3m50cm b=2m20cm​
    12·1 answer
  • Which algebraic expression is a polynomial with a degree of 2?
    10·1 answer
  • Which pattern will form a cube when folded?
    7·1 answer
  • I need help asap please give an answer
    15·2 answers
  • Plz answer it’s very important :( giving brainliest
    15·2 answers
  • Three classes at a junior high school raised money to buy a new computers.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!