Answer:
Here we have the domain:
D = 0 < x < 1
And we want to find the range in that domain for:
1) y = f(x) = x
First, if the function is only increasing in the domain (like in this case) the minimum value in the range will match with the minimum in the domain (and the same for the maximums)
f(0) = 0 is the minimum in the range.
f(1) = 1 is the maximum in the range.
The range is:
0 < y < 1.
2) y = f(x) = 1/x.
In this case the function is strictly decreasing in the domain, then the minimum in the domain coincides with the maximum in the range, and the maximum in the domain coincides with the minimum in the range.
f(0) = 1/0 ---> ∞
f(1) = 1/1
Then the range is:
1 < x.
Notice that we do not have an upper bound.
3) y = f(x) = x^2
This function is strictly increasing, then:
f(0) = 0^2 = 0
f(1) = 1^2 = 1
the range is:
0 < y < 1
4) y = f(x) = x^3
This function is strictly increasing in the interval, then:
f(0) = 0^3 = 0
f(1) = 1^3 = 1
the range is:
0 < y < 1.
5) y = f(x) = √x
This function is well defined in the positive reals, and is strictly increasing in our domain, then:
f(0) = √0 = 0
f(1) = √1 =1
The range is:
0 < y < 1
Step-by-step explanation:
This is known as the triple tangent identity. Start with the fact that the three angles add up to 0.
(x − y) + (z − x) + (y − z) = 0
Subtract two terms to the other side and take the tangent:
x − y = -((z − x) + (y − z))
tan(x − y) = tan(-((z − x) + (y − z)))
Use reflection property:
tan(x − y) = -tan((z − x) + (y − z))
Now use angle sum identity:
tan(x − y) = -[tan(z − x) + tan(y − z)] / [1 − tan(z − x) tan(y − z)]
tan(x − y) = [tan(z − x) + tan(y − z)] / [tan(z − x) tan(y − z) − 1]
tan(x − y) [tan(z − x) tan(y − z) − 1] = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) − tan(x − y) = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) = tan(x − y) + tan(z − x) + tan(y − z)
When we say a statistic is resistant, we mean the extreme values do not affect the statistic to a large extent or to an extent which makes a major difference. Mean and median are example of such statistics. By changing the extreme values we do not see a substantial difference in the value of mean and median for the data set.
Consider a sample: 1,2,3,4,4,5,6,7,8
The median for this data set is 4.
If we change the extreme values to get this sample: -5,2,3,4,4,5,6,7,100
The median will still be the same i.e. 4. This is what is meant by a resistant statistic.
So option a is the correct ans.
All 3 equations the Answer is v= 13/2