Answer:

Step-by-step explanation:
Use the formula for a semicircle's perimeter.

Plug in 6 for d.

Let's use 3.14 for
, just to make it easier, but of course, if it states to round it to something else, just plug in that many values for
.

Answer: 2 - 2*sin³(θ) - √1 -sin²(θ)
Step-by-step explanation: In the expression
cos(theta)*sin2(theta) − cos(theta)
sin (2θ) = 2 sin(θ)*cos(θ) ⇒ cos(θ)*2sin(θ)cos(θ) - cos(θ)
2cos²(θ)sin(θ) - cos(θ) if we use cos²(θ) = 1-sin²(θ)
2 [ (1 - sin²(θ))*sin(θ)] - cos(θ)
2 - 2sin²(θ)sin(θ) - cos(θ) ⇒ 2-2sin³(θ)-cos(θ) ; cos(θ) = √1 -sin²(θ)
2 - 2*sin³(θ) - √1 -sin²(θ)
4¹ = 4
4² = 16
4³ = 64
4⁴ = 256
(4⁵ = 1,024 too big)
The answer is Hundredths place
Answer:
-12x+20
Step-by-step explanation:
12+2x-14x+8
Add constants: 20+2x-14x
Add variables: 20-12x
Reorder: -12x+20