Answer:
204/1015 (irreducible) = 20.1%
1/8120 (irreducible) = 0.01232%
1/5832 (irreducible) = 0.01715%
1/6 (irreducible) = 16.67%
Step-by-step explanation:
0.19992 because u need to times the digits
Answer: The answer is cosine of that acute angle.
Step-by-step explanation: We are to find the ratio of the adjacent side of an acute angle to the hypotenuse.
In the attached figure, we draw a right-angled triangle ABC, where ∠ABC is a right angle, and ∠ACB is an acute angle.
Now, side adjacent to ∠ACB is BC, which is the base with respect to this particular angle, and AC is the hypotenuse.
Now, the ratio is given by

Thus, the ratio is cosine of the acute angle.
let's firstly conver the mixed fractions to improper fractions and then get their product.
![\stackrel{mixed}{4\frac{1}{2}}\implies \cfrac{4\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{9}{2}} ~\hfill \stackrel{mixed}{2\frac{1}{2}}\implies \cfrac{2\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{5}{2}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{9}{2}\cdot \cfrac{5}{2}\cdot 6\implies \cfrac{270}{2}\implies 135](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B4%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B4%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D%20~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B5%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B9%7D%7B2%7D%5Ccdot%20%5Ccfrac%7B5%7D%7B2%7D%5Ccdot%206%5Cimplies%20%5Ccfrac%7B270%7D%7B2%7D%5Cimplies%20135)
hmmm I take it that one can write that mixed as
.
is valid, not that it makes any sense.