1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timurjin [86]
3 years ago
13

What is the degree of the polynomial? Can someone please check my work?

Mathematics
1 answer:
worty [1.4K]3 years ago
7 0
Yes I agree with that because you combined the terms in the monomial correctly and the degree of the monomial was greater then the degree of any other mono/binomials in the polynomial
You might be interested in
Factor completely 3X^2 -25​
Dominik [7]

In order to factor a polynomial, you have to find its roots

x_1,\ x_2,\ldots,x_n

So that you can factor it as

p(x)=(x-x_1)(x-x_2)\cdots(x-x_n)

So, in this case, we're looking for the solutions of

3x^2-25=0 \iff 3x^2=25 \iff x^2 = \dfrac{25}{3} \iff x=\pm\sqrt{\dfrac{25}{3}}=\pm\dfrac{5}{\sqrt{3}}

So, the polynomial can be written as

3x^2-25 = \left(x-\dfrac{5}{\sqrt{3}}\right)\left(x+\dfrac{5}{\sqrt{3}}\right)

5 0
3 years ago
8. A sequence can be generated by using 2n - 11. What are the first four terms in<br> the sequence?
Lapatulllka [165]

Answer:

              \bold{a_1=-9\,,\quad a_2=-7\,,\quad a_2=-5\,,\quad a_4=-3}

Step-by-step explanation:

a_n=2n-11\\\\a_1=2(1)-11=2-11=-9\\\\a_2=2(2)-11=4-11=-7\\\\a_3=2(3)-11=6-11=-5\\\\a_4=2(4)-11=8-11=-3

7 0
3 years ago
Why does 2+2=ddddddddddddddddddddddddddddddddddd
Dahasolnce [82]

Answer:

Because 2+2 equals 4dd

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Explain how to use the combine place values strategy to find 223 - 119
ololo11 [35]
 the anwser is 104 because u subrtacted
8 0
3 years ago
For the following telescoping series, find a formula for the nth term of the sequence of partial sums {Sn}. Then evaluate limn→[
Ivenika [448]

Answer:

The following are the solution to the given points:

Step-by-step explanation:

Given value:

1) \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2}\\\\2) \sum ^{\infty}_{k = 1} \frac{1}{(k+6)(k+7)}

Solve point 1 that is \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2}\\\\:

when,

k= 1 \to  s_1 = \frac{1}{1+1} - \frac{1}{1+2}\\\\

                  = \frac{1}{2} - \frac{1}{3}\\\\

k= 2 \to  s_2 = \frac{1}{2+1} - \frac{1}{2+2}\\\\

                  = \frac{1}{3} - \frac{1}{4}\\\\

k= 3 \to  s_3 = \frac{1}{3+1} - \frac{1}{3+2}\\\\

                  = \frac{1}{4} - \frac{1}{5}\\\\

k= n^  \to  s_n = \frac{1}{n+1} - \frac{1}{n+2}\\\\

Calculate the sum (S=s_1+s_2+s_3+......+s_n)

S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....\frac{1}{n+1}-\frac{1}{n+2}\\\\

   =\frac{1}{2}-\frac{1}{5}+\frac{1}{n+1}-\frac{1}{n+2}\\\\

When s_n \ \ dt_{n \to 0}

=\frac{1}{2}-\frac{1}{5}+\frac{1}{0+1}-\frac{1}{0+2}\\\\=\frac{1}{2}-\frac{1}{5}+\frac{1}{1}-\frac{1}{2}\\\\= 1 -\frac{1}{5}\\\\= \frac{5-1}{5}\\\\= \frac{4}{5}\\\\

\boxed{\text{In point 1:} \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2} =\frac{4}{5}}

In point 2: \sum ^{\infty}_{k = 1} \frac{1}{(k+6)(k+7)}

when,

k= 1 \to  s_1 = \frac{1}{(1+6)(1+7)}\\\\

                  = \frac{1}{7 \times 8}\\\\= \frac{1}{56}

k= 2 \to  s_1 = \frac{1}{(2+6)(2+7)}\\\\

                  = \frac{1}{8 \times 9}\\\\= \frac{1}{72}

k= 3 \to  s_1 = \frac{1}{(3+6)(3+7)}\\\\

                  = \frac{1}{9 \times 10} \\\\ = \frac{1}{90}\\\\

k= n^  \to  s_n = \frac{1}{(n+6)(n+7)}\\\\

calculate the sum:S= s_1+s_2+s_3+s_n\\

S= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{(n+6)(n+7)}\\\\

when s_n \ \ dt_{n \to 0}

S= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{(0+6)(0+7)}\\\\= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{6 \times 7}\\\\= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{42}\\\\=\frac{45+35+28+60}{2520}\\\\=\frac{168}{2520}\\\\=0.066

\boxed{\text{In point 2:} \sum ^{\infty}_{k = 1} \frac{1}{(n+6)(n+7)} = 0.066}

8 0
3 years ago
Other questions:
  • 0.15(n-250) 5 to find the cost of 275 text messages
    5·2 answers
  • How do I write the equation of<br> Through(-2,-3),slope=-2
    14·1 answer
  • Find the inverse function of <br> (Show work)<br><br> f(x)=x^2-4
    12·1 answer
  • I need the answer real quick will someone help me
    9·1 answer
  • What is the value of this
    6·1 answer
  • What is the area of the shape below? Hint: use the formula: A =1/2 h (b1 + b2) *
    9·1 answer
  • Which expression is equivalent to square root -108 - square root -3?
    13·1 answer
  • 9!\25=? Please answer...
    10·2 answers
  • In 2012 five US postal stamps cost $2.20 how much did 7 stamps cost
    13·2 answers
  • Which algebraic expression represents “the quotient of a number and thirty”?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!