Looks like the given curve is
5<em>xy</em> + <em>z</em>⁴<em>x</em> - 3<em>yz</em> = 3
Differentiate both sides with respect to <em>x</em> :
5<em>y</em> + 4<em>z</em>³<em>x</em> ∂<em>z</em>/∂<em>x</em> + <em>z</em>⁴ - 3<em>y</em> ∂<em>z</em>/∂<em>x</em> = 0
Solve for ∂<em>z</em>/∂<em>x</em> :
(4<em>z</em>³<em>x</em> - 3<em>y</em>) ∂<em>z</em>/∂<em>x</em> = - (5<em>y</em> + <em>z</em>⁴)
∂<em>z</em>/∂<em>x</em> = - (5<em>y</em> + <em>z</em>⁴) / (4<em>z</em>³<em>x</em> - 3<em>y</em>)
At the point (1, 1, 1), this derivative is
∂<em>z</em>/∂<em>x</em> (1, 1, 1) = - (5 + 1) / (4 - 3) = -6
Answer:
2m^3n^3
Step-by-step explanation:
Let us start with the number parts
36 , 2 and 4
2 is common here as it can divide all
The smallest m factor is m^3 so it is common for all
The smallest n factor is n^3 which is also common for all
So, we have the greatest common factor as;
2 * m^3 * n^3 = 2m^3n^3
6+9x=456
Subtract 6 from both sides
6-6+9x = 456-6
9x = 450
Divide each side by 9
X = 50
Plug it in 6+9(50) = 456
6+450 = 456
Answer:
Step-by-step explanation:
Given: DE║BC
To prove: 
Statements Reasons
1). DE║BC 1). Given
2). ∠1 ≅ ∠4, ∠3 ≅ ∠4 2). Corresponding angles theorem
3). ΔADE ~ ΔABC 3). AA Similarity theorem
4).
4). Corresponding sides are proportional
5).
5). Segment addition postulate
6).
6). 
7).
7). Subtract 1 from both sides
8).
8). Take the reciprocal of both sides
Answer:
A
Step-by-step explanation:
I took the quick check : D