Answer:
A. NADH and FADH2 both donate electrons at the same location.
Explanation:
In the respiratory chain, four large protein complexes inserted into the mitochondrial inner membrane transport NADH and FADH₂ electrons (formed in glycolysis and the Krebs cycle) to oxygen gas, reducing them to NAD⁺ and FAD, respectively.
These electrons have great affinity for oxygen gas and, when combined with it, reduce it to water molecules at the end of the reaction.
Oxygen gas effectively participates in cellular respiration at this stage, so its absence would imply interruption of the process.
NADH and FADH₂ electrons, when attracted to oxygen, travel a path through protein complexes, releasing energy in this process.
The energy released by the NADH and FADH₂ electrons in the respiratory chain in theory yields <u>34</u> <u>ATP</u>, however, under normal conditions an average of 26 ATP molecules is formed.
If we consider that these 26 molecules are added to the two ATP formed in glycolysis and two ATP formed in the Krebs cycle, it can be said that cellular respiration reaches a maximum yield of 30 ATP per glucose molecule, although theoretically this number was 38 ATP per glucose molecule.
Answer:
their are the characteristics of the similar term of physical feature
Ans These differences show that they belong to a same kind of species. But in science whales are categorized as mammal
Explanation:
Step 1: Glycolysis. In glycolysis, glucose—a six-carbon sugar—undergoes a series of chemical transformations. In the end, it gets converted into two molecules of pyruvate, a three-carbon organic molecule. In these reactions, ATP is made, and \text{NAD}^+NAD + N, A, D, superscript is converted to {NADH}NADHN, A, D, H.
Step 2:Pyruvate oxidation. Each pyruvate from glycolysis goes into the mitochondrial matrix—the innermost compartment of mitochondria. There, it’s converted into a two-carbon molecule bound to Co-enzyme A, known as acetyl CoA. Carbon dioxide is released and NADH is generated.
Step 3:Citric acid cycle. The acetyl CoA made in the last step combines with a four carbon molecule and goes through a cycle or reaction, ultimately regenerating the four carbon starting molecule.