By the law of momentum conservation:-
=>m¹u¹ + m²u² = m1v1 + m²v² {let East is +ve}
=>u¹ + u² = v¹ + v² {as m1=m2}
=>3.5 - 2.75 = v1-1.5
<span>
=>v¹ = 2.25 m/s (East) </span>
Answer:
The position of the first dark spot on the positive side of the central maximum is 1.26 mm.
Explanation:
Given that,
Wavelength of light is 633 nm.
Slit width, d = 0.5 mm
The diffraction pattern forms on a screen 1 m away from the slit. We need to find the position of the first dark spot on the positive side of the central maximum.
For destructive interference :

Y is the distance of the minima from central maximum
Here, n = 1

So, the position of the first dark spot on the positive side of the central maximum is 1.26 mm.
Answer: the same as Lily's
Explanation:
Angular velocity has to do with the speed at which an object will be able to rotate. We are informed that Bob and Lily are riding on a merry-go-round.
Since we are further told that Bob rides on a horse near the outer edge of the circular platform, and Lily rides on a horse near the center of the circular platform and that he merry-go-round is rotating at a constant angular speed.
Based on the above analysis, Bob's angular speed will be thesame as that of Lily.
Explanation:
Draw a free body diagram of the toolbox. There are two forces:
Weight force mg pulling down,
and applied force F pulling up.
Sum of forces in the y direction:
∑F = ma
F − mg = ma
45 N − 15 N = (3 kg) a
a = 10 m/s²
The answer should be B. It's possible the answer key has a mistake.
Answer:
0.08024 W/m²
Explanation:
P = Power
= Distance = 15 m
= Intensity at 15 m = 0.26 W/m²
= Distance = 27 m
= Intensity at 27 m
Sound intensity is given by


So, we have the relation

The sound intensity at the given distance is 0.08024 W/m²