Answer:
Step-by-step explanation:
When using the substitution method we use the fact that if two expressions y and x are of equal value x=y, then x may replace y or vice versa in another expression without changing the value of the expression.
Solve the systems of equations using the substitution method
{y=2x+4
{y=3x+2
We substitute the y in the top equation with the expression for the second equation:
2x+4 = 3x+2
4−2 = 3x−2
2=== = x
To determine the y-value, we may proceed by inserting our x-value in any of the equations. We select the first equation:
y= 2x + 4
We plug in x=2 and get
y= 2⋅2+4 = 8
The elimination method requires us to add or subtract the equations in order to eliminate either x or y, often one may not proceed with the addition directly without first multiplying either the first or second equation by some value.
Example:
2x−2y = 8
x+y = 1
We now wish to add the two equations but it will not result in either x or y being eliminated. Therefore we must multiply the second equation by 2 on both sides and get:
2x−2y = 8
2x+2y = 2
Now we attempt to add our system of equations. We commence with the x-terms on the left, and the y-terms thereafter and finally with the numbers on the right side:
(2x+2x) + (−2y+2y) = 8+2
The y-terms have now been eliminated and we now have an equation with only one variable:
4x = 10
x= 10/4 =2.5
Thereafter, in order to determine the y-value we insert x=2.5 in one of the equations. We select the first:
2⋅2.5−2y = 8
5−8 = 2y
−3 =2y
−3/2 =y
y =-1.5
Answer: a(n)= a(n-1)+5
First term=8
A(n-1)= the previous term
Answer:
Step-by-step explanation:
In order to find who is more efficient at planting carrots, we want to put both ratios in terms of the same amount of time.
For simplicity, lets see how many carrots each can make in 1 hour.


Janet can plant 36 feet of carrots in one hour

Amy can plant 34 feet of carrots in one hour
So, Janet can plant carrots more quickly
1/8
Each time the probability for landing on heads in 1/2 or 50% so do 1/2*1/2*1/2=1/8.
The common ratio of the given geometric sequence is the number that is multiplied to the first term in order to get the second term. Consequently, this is also the number multiplied to the second term to get the third term. This cycle goes on and on until a certain term is acquired. In this item, the common ratio r is,
r = t⁵/t⁸ = t²/t⁵
The answer, r = t⁻³.
The next three terms are,
n₄ = (t²)(t⁻³) = t⁻¹
n₅ = (t⁻¹)(t⁻³) = t⁻⁴
n₆ = (t⁻⁴)(t⁻³) = t⁻⁷
The answers for the next three terms are as reflected above as n₄, n₅, and n₆, respectively.