Answer:
(0,0) or Infinitely many solutions.
Step-by-step explanation:
-−4x−4y=0
−4x−4y+4y=0+4y(Add 4y to both sides)
−4x=4y
−4x/-4= 4y/-4
(Divide both sides by -4)
x=−y
4x+4y=0
4(−y)+4y=0
0=0
Answer:
m = 3/2
Step-by-step explanation:
Use the slope formula: (y2 - y1) / (x2 - x1)
Answer:

Step-by-step explanation:
Find the slope using the points, (1, -3) and (3, 1):

m = 2
Find the y-intercept (b) by substituting x = 1, y = -3, and m = 2 in 


Subtract 2 from both sides



Plug in the value of m and b into the slope-intercept form equation,
.
Thus:

✅
------------------------------------------------------------------
Question
------------------------------------------------------------------

------------------------------------------------------------------
Split the fraction on the left
------------------------------------------------------------------

------------------------------------------------------------------
Take away h/5 from both sides
------------------------------------------------------------------

------------------------------------------------------------------
Change the denominator to be the same
------------------------------------------------------------------

------------------------------------------------------------------
Put it into single fraction
------------------------------------------------------------------

-------------------------------------------------------------------
Rearrange (This step may not be necessary)
------------------------------------------------------------------

Ben drinks 3 1/2 liters of tea every 40 minutes.
This means that he would drink 1 3/4 of tea every 20 minutes (divide both sides by 2).
Now, let's multiply each side by 3.
1.75 * 3 = 5.25 (aka 5 1/4)
20 * 3 = 60 minutes (an hour)
He drinks 5 1/4 liters of tea in one hour.