Answer:
Step-by-step explanation:
Since G(0) = g(0) = 20, the parabolic graphs of these functions share a y-intercept: (0, 20).
Completing the square puts these equations into vertex form, which simplifies comparisons of the graphs:
G(x) = 2x^2 - 12x + 20 becomes
2(x^2 - 6x + 9 - 9) + 20, or
2(x - 3)^2 - 18 + 20, or 2(x - 3)^2 + 2. Comparing this result to
a(x - h)^2 + k, we see that the vertex is located at (3, 2).
Going through the same process for g(x) 2x^2+12x+20, we get:
g(x) = 2(x + 3)^2 + 2, whose vertex is at (-3, 2).
Next time, please include ALL info pertaining to your question, including the set of possible answer choices. Thank you.
Answer:
Step-by-step explanation:
Given the equation y=-2x+1 and given another equation y=mx+b in order for us to have no solution we must guarantee that both lines do not intersect. Recall that m is the slope of the second equation and b the y-intercept. To guarantee that both lines don't intersect, they must be parallel. To have this result, we must have that they have the same slope but different y intercept. That is take m = -2 and b any value different to +1. For example, the b = 6. So
y = -2x+6 = -2(x-3) is another equation that gives no solution to the system.
Step-by-step explanation:
solution:- from LHS 1-cos²x/sinx
∵ 1-cos²x = sin²x
∴ sin²x /sinx = sinx
from RHS tanx × cosx
∵tanx = sinx×cosx
∴ sinx/ cosx × cosx = sinx
Since, LHS = RHS proved ___
7 * 38 + 3*45 - 56
use order of operations
(7*38) + (3*45) - 56
266 + 135 - 56
=345
If an integer is chosen between 1 and 50 inclusive, you have 50 numbers total to deal with, so 50 is in the denominator of our ratio (fraction). All the numbers divisible by 3 in that interval total 16 numbers. So the ratio would be 16/50 for a percentage of 32%