Range = highest value - lowest = 35 - 12 = 23
2/9 * 36 = 2*4 = 8
Answer:
62 degrees
Step-by-step explanation:
180 - (65 + 53) =
180 - 118 =
62 degrees
Hope that helps!
One way to solve the system is to <u>substitute</u> a variable.
<u>Explanation:</u>
One approach to solve an equation is by substitution of one variable. Right now, a condition for one factor, at that point substitute that arrangement in the other condition, and explain. All value(s) of the variable(s) that fulfills a condition, disparity, arrangement of conditions, or arrangement of imbalances.
The technique for tackling "by substitution" works by settling one of the conditions (you pick which one) for one of the factors (you pick which one), and afterward stopping this go into the other condition, "subbing" for the picked variable and fathoming for the other. At that point you back-explain for the principal variable.
Answer:
The correct answer is B. Linear Relationship
Answer: ∆V for r = 10.1 to 10ft
∆V = 40πft^3 = 125.7ft^3
Approximate the change in the volume of a sphere When r changes from 10 ft to 10.1 ft, ΔV=_________
[v(r)=4/3Ï€r^3].
Step-by-step explanation:
Volume of a sphere is given by;
V = 4/3πr^3
Where r is the radius.
Change in Volume with respect to change in radius of a sphere is given by;
dV/dr = 4πr^2
V'(r) = 4πr^2
V'(10) = 400π
V'(10.1) - V'(10) ~= 0.1(400π) = 40π
Therefore change in Volume from r = 10 to 10.1 is
= 40πft^3
Of by direct substitution
∆V = 4/3π(R^3 - r^3)
Where R = 10.1ft and r = 10ft
∆V = 4/3π(10.1^3 - 10^3)
∆V = 40.4π ~= 40πft^3
And for R = 30ft to r = 10.1ft
∆V = 4/3π(30^3 - 10.1^3)
∆V = 34626.3πft^3