30/40 say no, so x/1000 would say no. 1000/40=25, 25*30=750. So, about 750 would dislike it.
To solve this, we need to know how to find the mean of a set of data and how to find the median of a set of data.
To find the mean, or often called the average, we should add all of the values up, and then divide it by the number of values.
588+838+691+818+846+725+605+732+750 = 6593
6593/9=732.556
The problem tells us we should round to the nearest point, so our mean credit score is 733.
To find the median, we need to order the data from lowest to highest and find out which credit score(s) are right in the middle. If there are 2 in the middle, we simply should add them and divide by 2 to get our median. An easy way to do this is after you order them, you simply cross off one on each side until there is only 1 (or 2) left.
588 605 691 725 732 750 818 838 846
605 691 725 732 750 818 838
691 725 732 750 818
725 732 750
732
Since we only have one number in the middle, we are done with the median! We know our median is 732.
Now we simply need to compare them and subtract the lower one from the higher one.
Mean:733
Median: 732
733>732
We know the mean is bigger, so we should subtract the median from the mean.
733=732=1
Using the logic above, we can see that the mean is 1 point higher than the median.
Answer:
-20.50?
Step-by-step explanation:
I think you said he added 5 dollars in his account which would get some of his debt removed. But he would still have a remaining -20.50 dollars to get rid of.
Answer:
1. Perpendicular
2. Isosceles
3. Never
Step-by-step explanation:
1. AC ⊥ BD because diameter of a square are perpendicular bisector of each other.
2. In Δ AOB , By using pythagoras : AB² = OA² + OB² .......( 1 )
In Δ COB , By using pythagoras : BC² = OC² + OB² ..........( 2 )
But, OA = OC because both are radius of same circle
So, by using equations ( 1 ) and ( 2 ), We get AB = BC ≠ AC
⇒ ABC is a triangle having two equal sides so ABC is an isosceles triangle.
3. The side can never be equal to radius of circle because the side of the square will be chord for the circle and in a circle chord can never be equal to its radius