Answer:
a) The 99% of Control limits are
316.36 < µ< 333.64
b) Lower limit : = 316.36
Step-by-step explanation:
<u>Explanation</u>:-
<u>Step(i</u>)
<em>Given the sample size 'n' = 20</em>
<em>Given the sample mean 'x⁻' = 325minutes</em>
Suppose we know that the run time is approximately normal with variance 225 minutes
Population variance 'σ²' = 225 minutes
<em>Standard deviation of the population 'σ' = √</em>225 = <em>15</em>
<em>Level of significance ∝ = 0.99</em>
<em><u>Step(ii):</u></em>-
<u><em>99% of confidence intervals of the mean is determined by</em></u>
<u><em /></u>
<u><em /></u>
<u><em>The z-score of 99% of confidence intervals =2.576</em></u>
<u><em /></u>
<u><em /></u>
on calculation, we get
(325 - 8.640 , 325 + 8.640)
<u>99% of Control limits are </u>
316.36 < µ< 333.64
Lower limit : 325 - 8.640 = 316.36
upper limit : 325 + 8.640 = 333.64
<u>Conclusion</u>:-
a) The 99% of Control limits are
316.36 < µ< 333.64
b) Lower limit : = 316.36
<u><em /></u>