Answers:
Part A: 12y² + 10y – 21
Part B: 4y³ + 6y² + 6y – 5
Part C: See below.
Explanations:
Part A:
For this part, you add Sides 1, 2 and 3 together by combining like terms:
Side 1 = 3y² + 2y – 6
Side 2 = 4y² + 3y – 7
Side 3 = 5y² + 5y – 8
3y² + 2y – 6 + 4y² + 3y – 7 + 5y² + 5y – 8
Combine like terms:
3y² + 4y² + 5y² + 2y + 3y + 5y – 6 – 7 – 8
12y² + 10y – 21
Part B:
You have the total perimeter and the sum of three of the sides, so you just need that fourth side value, which we can call d.
P = 4y³ + 18y² + 16y – 26
Sides 1, 2 & 3 = 12y² + 10y – 21
Create an algebraic expression:
12y² + 10y – 21 + d = 4y³ + 18y² + 16y – 26
Solve for d:
12y² + 10y – 21 + d = 4y³ + 18y² + 16y – 26
– 12y² – 12y²
10y – 21 + d = 4y³ + 6y² + 16y – 26
– 10y – 10y
– 21 + d = 4y³ + 6y² + 6y – 26
+ 21 + 21
d = 4y³ + 6y² + 6y – 5
Part C:
If closed means that the degree that these polynomials are at stay that way, then yes, this is true in these cases because you will notice that each side had a y², y and no coefficient value except for the fourth one. This didn't change, because you only add and subtract like terms.
Answer:
35°
Step-by-step explanation:
Inscribed angle s is half the measure of the arc it subtends. That arc is the supplement to the 110° arc shown. The arc is 70°, so angle s is 35°.
Μ = (0×0.026) + (1×0.072) +(2×0.152) + (3×0.303) + (4×0.215) + (5×0.164) + (6×0.066)
μ = 0 + 0.072 + 0.304 + 0.909 + 0.86 + 0.82 + 0.396
μ = 3.361 ≈ 3.4
We need the value of ∑X² to work out the variance
∑X² = (0²×0.026) + (1²×0.072) + (2²×0.152) + (3²×0.303) + (4²×0.215) + (5²×0.164) + (6²×0.066)
∑X² = 0+0.072+0.608+2.727+3.44+4.1+2.376
∑X² = 13.323
Variance = ∑X² - μ²
Variance = 13.323 - (3.4)² = 1.763 ≈ 2
Standard Deviation = √Variance = √1.8 = 1.3416... ≈ 1.4
The correct answer related to the value of mean and standard deviation is the option D
<span>
An employee works an average of 3.4 overtime hours per week with a standard deviation of approximately 1.4 hours.</span>
Question # 1
Answer:

Step-by-step explanation:
Given the expression

∵ 
∵ 








Therefore,

Question # 2
Answer:

Step-by-step explanation:
Given

∵ 
∵ 










Therefore,
