Focus on the top line angles for now.
Those two angles combine to the straight angle ABC, which is 180 degrees.
(angleABY) + (angleYBC) = angle ABC
(x+25)+(2x+50) = 180
(x+2x) + (25+50) = 180
3x+75 = 180
3x = 180-75
3x = 105
x = 105/3
x = 35
We'll use this x value to find that:
- angle YBC = 2x+50 = 2*35+50 = 70+50 = 120 degrees
- angle BEF = 5x-55 = 5*35-55 = 175-55 = 120 degrees
Angles YBC and BEF are corresponding angles (they are both in the northeast corner of their respective four-corner angle configuration). They are both 120 degrees. Since we have congruent corresponding angles, we have effectively proven that AC is parallel to DF. Refer to the converse of the corresponding angles theorem.
The regular version of the "corresponding angles theorem" says that if two lines are parallel, then the corresponding angles are congruent. The converse reverses the logic of the conditional statement. Meaning that if the corresponding angles are congruent, then the lines are parallel.
Answer:
do 65 / 5 then multiply 80 * it 100
Hello!
For this problem we are given that quadrilateral ABCD is congruent to quadrilateral GJIH, meaning that all sides and angle measures will be equivalent to its corresponding side.
This means that to find
, we can look at quadrilateral GJIH's corresponding side to quadrilateral ABCD's side AD, which is side GH, which has a value of 9.
This means that 9 should also be the side length of side AD, which we're given a value of
.

Solve.

Hope this helps!