<h3><u>Question:</u></h3>
In a video game, Clare scored 50% more points than Tyler. If c is the number of points that Clare scored and t is the number of points that Tyler scored, which equations are correct? Select all that apply.
the options are
A. c=1.5t
B.c=t+0.5
C. c=t+0.5t
D. c=t+50
E.c=(1+0.5)t
<h3><u>Answer:</u></h3>
Options A, C, E are correct
The correct equations are c = 1.5t and c = t + 0.5t and c = (1 + 0.5)t
<h3><u>Solution:</u></h3>
Let "c" be the number of points clare scored
Let "t" be the number of points tyler scored
Given that,
Clare scored 50% more points than Tyler
Points scored by clare = points tyler scored + 50% of Tyler points
c = t + 50 % of t
Therefore, on solving, we get
![c = t + \frac{50}{100} \times t\\\\c = t + 0.5t](https://tex.z-dn.net/?f=c%20%3D%20t%20%2B%20%5Cfrac%7B50%7D%7B100%7D%20%5Ctimes%20t%5C%5C%5C%5Cc%20%3D%20t%20%2B%200.5t)
Thus option c is correct
On simplfying we get,
c = t + 0.5t = 1.5t
c = 1.5t
Thus option A is correct
c = t + 0.5t
On taking "t" as common we get,
c = t(1 + 0.5)
Thus option E is also correct