1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Virty [35]
3 years ago
8

The exchange rate of U.S. dollars to British pounds is .63. You have $4000 to convert to British pounds (£). How many British po

unds will you receive? A. £6349 B. £3937 C. £4063 D. £2520
Mathematics
1 answer:
Reika [66]3 years ago
7 0

Answer: £2520


Step-by-step explanation:


You have $4000 to convert to British pounds (?). 4,000*.63=2,520.


You might be interested in
PLEASE HELP!!!! I'LL GIVE BRAINLLEST!!! a bag contains hair ribbons for a spirit rally. The bag contains 8 black ribbons and 12
daser333 [38]
I believe that the answer is 1/5 but i am not entirely sure
6 0
1 year ago
If cos theta is less than 0 and cot theta is greater than 0, then the terminal point determined by theta is in:
Keith_Richards [23]
There exist an abbreviation that ALL - S - T - C where all trigonometric functions in first quandrant are positive. S, T, and C are the first letters of the trigonometric functions that are positive in quadrant 2, 3, and 4, respectively. This also means that in the same quadrant, their reciprocals are also positive. For the given above, it is in Quadrant 3 where T is positive and cosine is negative. 
5 0
2 years ago
Read 2 more answers
Some doctors recommend that no more than 30% of a person's daily calories come from fats. Following this recommendation, if you
White raven [17]

2400 divided by 10 is 240 and 240 x 3 = 720 so your answer would be 720 calories per day

8 0
3 years ago
Find the 8th term of the geometric sequence, given the first term and common ratio. a1=6 r=-1/3
Damm [24]

The rule of a geometric sequence:

a_n=a_1r^{n-1}

We have:

a_1=6;\ r=-\dfrac{1}{3}

Find a_8=?\to n=8

substitute:

a_8=6\cdot\left(-\dfrac{1}{3}\right)^{8-1}=6\cdot\left(-\dfrac{1}{3}\right)^7=6\cdot\left(-\dfrac{1}{2187}\right)=-\dfrac{2}{729}

8 0
3 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
Other questions:
  • 66. Which of the following shows the fractions 11/3 , 25/7 , and 18/5 in order from least to greatest?
    14·1 answer
  • A student runs 100 meters in 11 seconds. What is the speed of the student?
    7·1 answer
  • Complete the pattern 43,37,31,25
    12·1 answer
  • If there are two endpoints, how many inequalities do you need in your answers?
    12·1 answer
  • Solve for each expression by writing the solution in unit form and in standard form.
    14·1 answer
  • Can someone help me with this please its due in 5mins
    8·1 answer
  • A diesel train left Washington and traveled
    9·1 answer
  • SOMEONE HELP ME PLEASE
    13·1 answer
  • HELP PLEASE!!!
    9·1 answer
  • Kaya is riding her dirt bike eastward on a dirt road. She spots a pothole ahead. Kaya slows her car from 18.0 m/s to 6.5 m/s in
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!