Answer:
13.5 = 9.5 + x
x=4
Step-by-step explanation:
In this problem, the price of the baseball cap, which is $9.50, and a baseball, whose price is unknown (and therefore must be the variable), total $13.50. So, to set up the equation add the two prices and set them equal to the total, 9.5+x=13.5.
Then, using the subtraction property of equality subtract 9.5 from both sides. This means x=4, so the baseball cost 4 dollars.
Well you need more info you need to know how much land she bought
Answer:
11.75
Step-by-step explanation:
From the question above 8 is the difference of d and 3.75
We are required to find the value of d
d-3.75= 8
d= 8 + 3.75
d= 11.75
Hence the value of d is 11.75
Answer:
(3x+4)(5x+7)
Step-by-step explanation:
15x^2
+41x+28
Factor the expression by grouping. First, the expression needs to be rewritten as 15x^2
+ax+bx+28. To find a and b, set up a system to be solved.
a+b=41
ab=15×28=420
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 420.
1,420
2,210
3,140
4,105
5,84
6,70
7,60
10,42
12,35
14,30
15,28
20,21
Calculate the sum for each pair.
1+420=421
2+210=212
3+140=143
4+105=109
5+84=89
6+70=76
7+60=67
10+42=52
12+35=47
14+30=44
15+28=43
20+21=41
The solution is the pair that gives sum 41.
a=20
b=21
Rewrite 15x^2
+41x+28 as (15x^2
+20x)+(21x+28).
(15x^2
+20x)+(21x+28)
Factor out 5x in the first and 7 in the second group.
5x(3x+4)+7(3x+4)
Factor out common term 3x+4 by using distributive property.
(3x+4)(5x+7)
Answer: The mean increases by 3
-----------------------------------------------------------
-----------------------------------------------------------
The original data set is
{50, 76, 78, 79, 79, 80, 81, 82, 82, 83}
The outlier is 50 because it is not near the group of values from 76 to 83 which is where the main cluster is.
The original mean is M = (50+76+78+79+79+80+81+82+82+83)/10 = 77
If we take out the outlier 50, the new mean is N = (76+78+79+79+80+81+82+82+83)/9 = 80
So in summary so far
old mean = M = 77
new mean = N = 80
The difference in values is N-M = 80-77 = 3
So that's why the mean increases by 3