By Euler's method the <em>numerical approximate</em> solution of the <em>definite</em> integral is 4.189 648.
<h3>How to estimate a definite integral by numerical methods</h3>
In this problem we must make use of Euler's method to estimate the upper bound of a <em>definite</em> integral. Euler's method is a <em>multi-step</em> method, related to Runge-Kutta methods, used to estimate <em>integral</em> values numerically. By integral theorems of calculus we know that definite integrals are defined as follows:
∫ f(x) dx = F(b) - F(a) (1)
The steps of Euler's method are summarized below:
- Define the function seen in the statement by the label f(x₀, y₀).
- Determine the different variables by the following formulas:
xₙ₊₁ = xₙ + (n + 1) · Δx (2)
yₙ₊₁ = yₙ + Δx · f(xₙ, yₙ) (3) - Find the integral.
The table for x, f(xₙ, yₙ) and y is shown in the image attached below. By direct subtraction we find that the <em>numerical</em> approximation of the <em>definite</em> integral is:
y(4) ≈ 4.189 648 - 0
y(4) ≈ 4.189 648
By Euler's method the <em>numerical approximate</em> solution of the <em>definite</em> integral is 4.189 648.
To learn more on Euler's method: brainly.com/question/16807646
#SPJ1
Answer:
<h3>QUESTION;</h3>
This data set represents the number of cups of flour used in different recipes.
What is the mean of this data set?
{12, 13, 23, 112}
Enter your answer as a fraction in simplest form in the box.
___ cups
<h3>ANSWER</h3><h3> 13 po </h3>
Step-by-step explanation:
<h3>#Carryonlearing</h3>
It would be called a mess up on ur paper
Answer:
1 11/20
Step-by-step explanation:
hope this helps! :)
Multiply both sides by 10.
2b=990
divide both sides by 2
b= 495