You add the like terms. In this case, the like terms are -6w,+7w & 5,-4.
-6w + 7w = 1w.
5 - 4 = -1.
The coefficients (terms with variables - letters) comes firm, then the terms (numbers)
.
so the final answer is: 1w -1 :)
<span>x + 9 = 2(x - 1)^2
x + 9 = 2(x^2 - 2x + 1)
x + 9 = 2x^2 - 4x + 2
</span>2x^2 - 4x + 2 - x - 9 = 0
2x^2 - 5x -7 =0
The given equation
x/2 = y/3 = z/4
can be broken into three separate equations which I'll call equations (A), (B) and (C)
- x/2 = y/3 ..... equation (A)
- y/3 = z/4 .... equation (B)
- x/2 = z/4 .... equation (C)
We'll start off solving for z in equation (C)
x/2 = z/4
4x = 2z ... cross multiply
2z = 4x
z = 4x/2 ... divide both sides by 2
z = 2x
Now let's solve for y in equation (A)
x/2 = y/3
3x = 2y
2y = 3x
y = 3x/2
y = (3/2)x
y = 1.5x
The results of z = 2x and y = 1.5x both have the right hand sides in terms of x. This will allow us to replace the variables y and z with something in terms of x, which means we'll have some overall expression with x only. The idea is that expression should simplify to 3 if we played our cards right.
We won't be using equation (B) at all.
---------------------
The key takeaway from the last section is that
Let's plug those items into the expression (2x-y+5z)/(3y-x) to get the following:
(2x-y+5z)/(3y-x)
(2x-y+5(2x))/(3y-x) ..... plug in z = 2x
(2x-y+10x)/(3y-x)
(12x-y)/(3y-x)
(12x-1.5x)/(3(1.5x)-x) .... plug in y = 1.5x
(12x-1.5x)/(4.5x-x)
(10.5x)/(3.5x)
(10.5)/(3.5)
3
We've shown that plugging z = 2x and y = 1.5x into the expression above simplifies to 3. Therefore, the equation (2x-y+5z)/(3y-x) = 3 is true when x/2 = y/3 = z/4. This concludes the proof.
Answer:
the answer is a
Step-by-step explanation:
if you compare pm and qn pm is shorter so you see its only a little bit longer then that so its close to there.
If you would like to know the solution to the equation (x - 2) * (x + 5) = 18, you can calculate this using the following steps:
(x - 2) * (x + 5<span>) = 18
</span>x^2 + 5x - 2x - 10 = 18
x^2 + 3x - 28 = 0
(x + 7) * (x - 4) = 0
1. x = - 7
2. x = 4
The correct result would be x = - 7.